Εμφανίζονται 1 - 20 Αποτελέσματα από 91 για την αναζήτηση '"СИМПАТИЧЕСКАЯ НЕРВНАЯ СИСТЕМА"', χρόνος αναζήτησης: 0,74δλ Περιορισμός αποτελεσμάτων
  1. 1
  2. 2
  3. 3
  4. 4
  5. 5
    Academic Journal

    Πηγή: CHILDREN INFECTIONS; Том 23, № 2 (2024); 22-26 ; ДЕТСКИЕ ИНФЕКЦИИ; Том 23, № 2 (2024); 22-26 ; 2618-8139 ; 2072-8107

    Περιγραφή αρχείου: application/pdf

    Relation: https://detinf.elpub.ru/jour/article/view/944/663; Циркин В.И., Трухина С.И., Трухин А.Н. Нейрофизиология: физиология ЦНС. В 2 ч. Часть 1: учебник для вузов. 2-е изд., испр. и доп. М.: Издательство Юрайт, 2020.; Ноздрачев А.Д., Фатеев М.М. Звездчатый ганглий. Структура и функции. СПб: «Наука», 2002.; Schwartz PJ, Priori SG, Cerrone M, Spazzolini C, Odero A, Napolitano C, Bloise R, De Ferrari GM, Klersy C, Moss AJ, Zareba W, Robinson JL, Hall WJ, Brink PA, Toivonen L, Epstein AE, Li C, Hu D. Left cardiac sympathetic denervation in the management of high-risk patients affected by the long-QT syndrome. Circulation. 2004; 109(15):1826-33. doi:10.1161/01.CIR.0000125523.14403.1E.; Пальчик А.Б., Шабалов Н.П. Гипоксически-ишемическая энцефалопатия новорожденных. 4-е изд., испр. и доп. М.: МЕДпресс-информ, 2013.; Дашичев К.В., Н.В. Олендарь, О.В. Кулибина, Е.П. Ситникова, Т.В. Виноградова. К патогенезу синдрома общего угнетения центральной нервной системы у недоношенных новорожденных детей. Детские инфекции. 2022; 21(1):23—28. doi:10.22627/2072-8107-2022-21-1-23-28; Курьянова Е. В., Трясучев А. В., Ступин В.О., Жукова Ю. Д., Горст Н. А. Влияние блокады вегетативных ганглиев М-холино и ?-адренорецепторов миокарда на вариабельность сердечного ритма крыс. Российский физиологический журнал им. И.М. Сеченова. 2020; 106(1):17—30.; Троханова О.В., Гурьев Д.Л., Брянцев М.Д., Гурьева Д.Д., Дылинова Ю.О., Гумукова Ф.Б. Анализ эффективности различных вариантов токолитической терапии. Доктор.Ру. 2017; 13(142)—14(143):37—43.; Харкевич Д.А. (ред.). Фармакология. М.:ГЭОТАР-Медиа, 2017.; Меньшов В.А., Трофимов А.В., Загурская А.В. Никотин в различных системах его доставки и его влияние на вариабельность сердечного ритма. Практическая онкология. 2020; 4(21):327—43.; Клиническая фармакология: национальное руководство. Под ред. Ю.Б. Белоусова, В.Г. Кукеса, В.К. Лепахина, В.И. Петрова. М.: ГЭОТАР-Медиа, 2014.; Маслюков П.М. Нейронная организация, проводящие пути и связи звездчатого ганглия кошки в постнатальном онтогенезе: Автореф. дисс. … д.м.н. специальность 14.00.02. Санкт-Петербург, 2003.; https://detinf.elpub.ru/jour/article/view/944

  6. 6
    Academic Journal

    Πηγή: Siberian Journal of Clinical and Experimental Medicine; Том 39, № 3 (2024); 41-50 ; Сибирский журнал клинической и экспериментальной медицины; Том 39, № 3 (2024); 41-50 ; 2713-265X ; 2713-2927

    Περιγραφή αρχείου: application/pdf

    Relation: https://www.sibjcem.ru/jour/article/view/2424/991; Nguyen T.N., Chow C.K. Global and national high blood pressure burden and control. Lancet. 2021;398(10304):932–933. DOI:10.1016/S0140-6736(21)01688-3.; NCD Risk Factor Collaboration (NCD-RisC). Worldwide trends in hypertension prevalence and progress in treatment and control from 1990 to 2019: a pooled analysis of 1201 population-representative studies with 104 million participants. Lancet. 2021;398(10304):957–980. DOI:10.1016/S0140-6736(21)01330-1.; GBD 2019 Risk Factors Collaborators (2020) Global burden of 87 risk factors in 204 countries and territories, 1990-2019: a systematic analysis for the Global Burden of Disease Study 2019. Lancet. 2020;396:1223– 1249. DOI:10.1016/S0140-6736(20)30752-2.; Grassi G., Pisano A., Bolignano D., Seravalle G., D’Arrigo G., Quarti-Trevano F. et al. Sympathetic nerve traffic activation in essential hypertension and its correlates: Systematic reviews and meta-analyses. Hypertension. 2018;72(2):483–491. DOI:10.1161/HYPERTENSIONAHA.118.11038.; Missouris C.G., Markandu N.D., He F.J., Papavasileiou M.V., Sever P., MacGregor G.A. Urinary catecholamines and the relationship with blood pressure and pharmacological therapy. J. Hypertens. 2016;34(4):704– 709. DOI:10.1097/HJH.0000000000000843.; Mancia G., Masi S., Palatini P., Tsioufis C., Grassi G. Elevated heart rate and cardiovascular risk in hypertension. J. Hypertens. 2021;39(6):1060– 1069. DOI:10.1097/HJH.0000000000002760.; Dell’Oro R., Quarti-Trevano F., Seravalle G., Bertoli S., Lovati C., Mancia G. et al. Limited reliability of heart rate as a sympathetic marker in chronic kidney disease. J. Hypertens. 2021;39(7):1429–1434. DOI:10.1097/HJH.0000000000002763.; Grassi G., Quarti-Trevano F., Seravalle G., Dell’Oro R., Facchetti R., Mancia G. Association between the European Society of Cardiology/European Society of hypertension heart rate thresholds for cardiovascular risk and neuroadrenergic markers. Hypertension. 2020;76(2):577–582. DOI:10.1161/HYPERTENSIONAHA.120.14804.; Grassi G. Sympathomodulatory effects of antihypertensive drug treatment. Am. J. Hypertens. 2016;29(6):665–675. DOI:10.1093/ajh/hpw012.; Spruill T.M., Butler M.J., Thomas S.J., Tajeu G.S., Kalinowski J., Castañeda S.F. et al. Association between high perceived stress over time and incident hypertension in black adults: Findings from the Jackson heart study. J. Am. Heart Assoc. 2019;8(21):e012139. DOI:10.1161/JAHA.119.012139.; Gordon A.M., Mendes W.B. A large-scale study of stress, emotions, and blood pressure in daily life using a digital platform. Proc. Natl. Acad. Sci. USA. 2021;118(31):e2105573118. DOI:10.1073/pnas.2105573118.; Song X., Zhang Z., Zhang R., Wang M., Lin D., Li T. et al. Predictive markers of depression in hypertension. Medicine (Baltimore). 2018;97(32):e11768. DOI:10.1097/MD.0000000000011768.; Berra E., Azizi M., Capron A., Høieggen A., Rabbia F., Kjeldsen S.E. et al. Evaluation of adherence should become an integral part of assessment of patients with apparently treatment-resistant hypertension. Hypertension. 2016;68(2):297–306. DOI:10.1161/HYPERTENSIONAHA.116.07464.; Розанов А.В., Котовская Ю.В., Ткачева О.Н. Роль активации симпатической нервной системы в патогенезе артериальной гипертонии и выборе способа лечения артериальной гипертензии. Евразийский кардиологический журнал. 2018;(3):88–90. DOI:10.38109/2225-1685-2018-3-88-94.; Dorresteijn J.A., Schrover I.M., Visseren F.L., Scheffer P.G., Oey P.L., Danser A.H. et al. Differential effects of renin-angiotensin-aldosterone system inhibition, sympathoinhibition and diuretic therapy on endothelial function and blood pressure in obesity-related hypertension: a double-blind, placebo-controlled cross-over trial. J. Hypertens. 2013;31(2):393–403. DOI:10.1097/HJH.0b013e32835b6c02.; Menon D.V., Arbique D., Wang Z., Adams-Huet B., Auchus R.J., Vongpatanasin W. Differential effects of chlorthalidone versus spironolactone on muscle sympathetic nerve activity in hypertensive patients. J. Clin. Endocrinol. Metab. 2009;94(4):1361–1366. DOI:10.1210/jc.2008-2660.; Raheja P., Price A., Wang Z., Arbique D., Adams-Huet B., Auchus R.J. et al. Spironolactone prevents chlorthalidone-induced sympathetic activation and insulin resistance in hypertensive patients. Hypertension. 2012;60(2):319–325. DOI:10.1161/HYPERTENSIONAHA.112.194787.; Grassi G., Seravalle G., Turri C., Bolla G., Mancia G. Short-versus longterm effects of different dihydropyridines on sympathetic and baroreflex function in hypertension. Hypertension. 2003;41(3):558–562. DOI:10.1161/01.HYP.0000058003.27729.5A.; Struck J., Muck P., Trübger D., Handrock R., Weidinger G., Dendorfer A. et al. Effects of selective angiotensin II receptor blockade on sympathetic nerve activity in primary hypertensive subjects. J. Hypertens. 2002;20(6):1143–1149. DOI:10.1097/00004872-200206000-00026.; Zanchetti A. Bottom blood pressure or bottom cardiovascular risk? How far can cardiovascular risk be reduced? J. Hypertens. 2009;27(8):1509– 1520. DOI:10.1097/HJH.0b013e32832e9500.; DiBona G.F. Sympathetic nervous system and hypertension. Hypertension. 2013;61(3):556–560. DOI:10.1161/HYPERTENSIONAHA.111.00633.; Hering D., Lambert E.A., Marusic P., Walton A.S., Krum H., Lambert G.W. et al. Substantial reduction in single sympathetic nerve firing after renal denervation in patients with resistant hypertension. Hypertension. 2013;61(2):457–464. DOI:10.1161/HYPERTENSIONAHA.111.00194.; Xiao L., Kirabo A., Wu J., Saleh M.A., Zhu L., Wang F. et al. Renal denervation prevents immune cell activation and renal inflammation in angiotensin II-induced hypertension. Circ. Res. 2015;117(6):547–557. DOI:10.1161/CIRCRESAHA.115.306010.; Harwani S.C., Raikwar N.S., Ratcliff J.A., Allamargot C., Chapleau M.W., Abboud F.M. Renal denervation prevents cholinergic mediated hypertension and renal macrophage infiltration. Circulation. 2017;136(1):А20885. DOI:10.1161/circ.136.suppl_1.20885.; Зюбанова И.В., Мордовин В.Ф., Пекарский С.Е., Рипп Т.М., Фальковская А.Ю., Личикаки В.А. и др. Возможные механизмы отдаленных кардиальных эффектов ренальной денервации. Артериальная гипертензия. 2019;25(4):423–432. DOI:10.18705/1607-419X-2019-25-4-423-432.; Фальковская А.Ю., Мордовин В.Ф., Пекарский С.Е., Рипп Т.М., Личикаки В.А., Ситкова Е.С. и др. Влияние ренальной денервации на уровень адипокинов и провоспалительный статус у больных резистентной артериальной гипертонией, ассоциированной с сахарным диабетом 2-го типа. Сибирский журнал клинической и экспериментальной медицины. 2019;34(4):118–127. DOI:10.29001/2073-8552-2019-34-4-118-127.; Зюбанова И.В., Мордовин В.Ф., Пекарский С.Е., Рипп Т.М., Фальковская А.Ю., Личикаки В.А. и др. Особенности динамики артериального давления и провоспалительных маркеров после ренальной денервации у пациентов с резистентной артериальной гипертензией и различным течением коронарного атеросклероза. Сибирский журнал клинической и экспериментальной медицины. 2020;35(1):28–37. DOI:10.29001/2073-8552-2020-35-1-28-37.; Зюбанова И.В., Мордовин В.Ф., Фальковская А.Ю., Пекарский С.Е., Рипп Т.М., Манукян М.А. и др. Отдаленные результаты ренальной денервации и их половые особенности: данные трехлетнего наблюдения. Российский кардиологический журнал. 2021;26(4):4006. DOI:10.15829/1560-4071-2021-4006.; Rodionova K., Fiedler C., Guenther F., Grouzmann E., Neuhuber W., Fischer M.J. et al. Complex reinnervation pattern after unilateral renal denervation in rats. Am. J. Physiol. Regul. Integr. Comp. Physiol. 2016;310(9):R806–R818. DOI:10.1152/ajpregu.00227.2014.; Booth L.C., Nishi E.E., Yao S.T., Ramchandra R., Lambert G.W., Schlaich M.P. et al. Reinnervation of renal afferent and efferent nerves at 5.5 and 11 months after catheter-based radiofrequency renal denervation in sheep. Hypertension. 2015:65(2):393–400. DOI:10.1161/HYPERTENSIONAHA.114.04176.; Katsurada K., Kario K. Emerging topics on renal denervation in hypertension: anatomical and functional aspects of renal nerves. Hypertens. Res. 2023;46(6):1462–1470. DOI:10.1038/s41440-023-01266-2.; Tsioufis C., Ziakas A., Dimitriadis K., Davlouros P., Marketou M., Kasiakogias A. et al. Blood pressure response to catheter-based renal sympathetic denervation in severe resistant hypertension: data from the Greek Renal Denervation Registry. Clin. Res. Cardiol. 2017;106(5):322–330. DOI:10.1007/s00392-016-1056-z.; Warchol-Celinska E., Prejbisz A., Kadziela J., Florczak E., Januszewicz M., Michalowska I. et al. Renal denervation in resistant hypertension and obstructive sleep apnea: Randomized proof-of-concept phase II trial. Hypertension. 2018;72(2):381–390. DOI:10.1161/HYPERTENSIONAHA.118.11180.; Jeong J.H., Fonkoue I.T., Quyyumi A.A., DaCosta D., Park J. Nocturnal blood pressure is associated with sympathetic nerve activity in patients with chronic kidney disease. Physiol. Rep. 2020;8(20):e14602. DOI:10.14814/phy2.14602.; Hering D., Marusic P., Duval J., Sata Y., Head G.A., Denton K.M. et al. Effect of renal denervation on kidney function in patients with chronic kidney disease. Int. J. Cardiol. 2017;232:93–97. DOI:10.1016/j.ijcard.2017.01.047.; Gosse P., Cremer A., Kirtane A.J., Lobo M.D., Saxena M., Daemen J. et al. Ambulatory blood pressure monitoring to predict response to renal denervation: A post hoc analysis of the RADIANCE-HTN SOLO study. Hypertension. 2021;77(2):529–536. DOI:10.1161/HYPERTENSIONAHA.120.16292.; Kario K., Wang T.D. Perspectives of renal denervation from hypertension to heart failure in Asia. Hypertens. Res. 2022;45(2):193–197. DOI:10.1038/s41440-021-00751-w.; Kandzari D.E., Mahfoud F., Bhatt D.L., Böhm M., Weber M.A., Townsend R.R. Confounding factors in renal denervation trials: Revisiting old and identifying new challenges in trial design of device therapies for hypertension. Hypertension. 2020;76(5):1410–1417. DOI:10.1161/HYPERTENSIONAHA.120.15745.; de Jager R.L., de Beus E., Beeftink M.M., Sanders M.F., Vonken E.J., Voskuil M. et al. Impact of Medication Adherence on the Effect of Renal Denervation: The SYMPATHY Trial. Hypertension. 2017;69(4):678–684. DOI:10.1161/HYPERTENSIONAHA.116.08818.; Böhm M., Kario K., Kandzari D.E., Mahfoud F., Weber M.A., Schmieder R.E. et al. SPYRAL HTN-OFF MED Pivotal Investigators (2020) Efficacy of catheter-based renal denervation in the absence of antihypertensive medications (SPYRAL HTN-OFF MED Pivotal): a multicentre, randomised, sham-controlled trial. Lancet. 2020;395(10234):1444–1451. DOI:10.1016/S0140-6736(20)30554-7.; Dörr O., Liebetrau C., Möllmann H., Gaede L., Troidl C., Haidner V. et al. Brain-derived neurotrophic factor as a marker for immediate assessment of the success of renal sympathetic denervation. J. Am. Coll. Cardiol. 2015;65:1151–1153. DOI:10.1016/j.jacc.2014.11.071.; de Jong M.R., Hoogerwaard A.F., Adiyaman A., Smit J.J., Heeg J.E., van Hasselt BAAM. Renal nerve stimulation identifies aorticorenal innervation and prevents inadvertent ablation of vagal nerves during renal denervation. Blood Press. 2018;27(5):271–279. DOI:10.1080/08037051.2018.1463817.; Манукян М.А., Фальковская А.Ю., Мордовин В.Ф., Зюбанова И.В., Солонская Е.И., Вторушина А.А. и др. Особенности бета-адренореактивности мембран эритроцитов у больных резистентной артериальной гипертензией в сочетании с сахарным диабетом 2-го типа. Сибирский журнал клинической и экспериментальной медицины. 2022;37(3):98–107. DOI:10.29001/2073-8552-2022-37-3-98-107.; Krum H., Schlaich M., Whitbourn R., Sobotka P.A., Sadowski J., Bartus K. et al. Catheter-based renal sympathetic denervation for resistant hypertension: a multicentre safety and proof-of-principle cohort study. Lancet. 2009;373:1275–1281. DOI:10.1016/S0140-6736(09)60566-3.; Xu Y., Xiao P., Fan J., Chen W., Du H., Ling Z. et al. Blood pressure elevation response to radiofrequency energy delivery: one novel predictive marker to long-term success of renal denervation. J. Hypertens. 2018;36(12):2460–2470. DOI:10.1097/HJH.0000000000001839.; de Jong M.R., Adiyaman A., Gal P., Smit J.J., Delnoy P.P., Heeg J.E. et al. Renal nerve stimulation-induced blood pressure changes predict ambulatory blood pressure response after renal denervation. Hypertension. 2016;68(3):707–714. DOI:10.1161/HYPERTENSIONAHA.116.07492.; Persu A., Azizi M., Jin Y., Volz S., Rosa J., Fadl Elmula F.E. et al. Hyperresponders vs. nonresponder patients after renal denervation: do they differ? J. Hypertens. 2014;32(12):2422–2427. DOI:10.1097/HJH.0000000000000347.; Zweiker D., Lambert T., Steinwender C., Weber T., Suppan M., Brussee H. et al. Blood pressure changes after renal denervation are more pronounced in women and nondiabetic patients: findings from the Austrian Transcatheter Renal Denervation Registry. J. Hypertens. 2019;37(11):2290–2297. DOI:10.1097/HJH.0000000000002190.; Sata Y., Hering D., Head G.A., Walton A.S., Peter K., Marusic P. et al. Ambulatory arterial stiffness index as a predictor of blood pressure response to renal denervation. J. Hypertens. 2018;36(6):1414–1422. DOI:10.1097/HJH.0000000000001682.; Mahfoud F., Bakris G., Bhatt D.L., Esler M., Ewen S., Fahy M. et al. Reduced blood pressure-lowering effect of catheter-based renal denervation in patients with isolated systolic hypertension: data from SYMPLICITY HTN-3 and the Global SYMPLICITY Registry. Eur. Heart J. 2017;38(2):93–100. DOI:10.1093/eurheartj/ehw325.; Baroni M., Nava S., Giupponi L., Meani P., Panzeri F., Varrenti M. et al. Effects of renal sympathetic denervation on arterial stiffness and blood pressure control in resistant hypertensive patients: A single centre prospective study. High Blood Press. Cardiovasc. Prev. 2015;22(4):411– 416. DOI:10.1007/s40292-015-0121-4.; Fengler K., Rommel K.P., Lapusca R., Blazek S., Besler C., Hartung P. et al. Renal denervation in isolated systolic hypertension using different catheter techniques and technologies. Hypertension. 2019;74(2):341– 348. DOI:10.1161/HYPERTENSIONAHA.119.13019.; Schmieder R.E., Mahfoud F., Mancia G., Narkiewicz K., Ruilope L., Hutton D. et al. Clinical event reductions in high-risk patients after renal denervation projected from the global SYMPLICITY registry. Eur. Heart J. Qual. Care Clin. Outcomes. 2023;9(6):575–582. DOI:10.1093/ehjqcco/qcac056.; Steinmetz M., Nelles D., Weisser-Thomas J., Schaefer C., Nickenig G., Werner N. Flow-mediated dilation, nitroglycerin-mediated dilation and their ratio predict successful renal denervation in mild resistant hypertension. Clin. Res. Cardiol. 2018;107(7):611–615. DOI:10.1007/s00392-018-1236-0.; Böhm M., Tsioufis K., Kandzari D.E., Kario K., Weber M.A., Schmieder R.E. et al. Effect of heart rate on the outcome of renal denervation in patients with uncontrolled hypertension. J. Am. Coll. Cardiol. 2021;78(10):1028–1038. DOI:10.1016/j.jacc.2021.06.044.; Kordalis A., Tsiachris D., Pietri P., Tsioufis C., Stefanadis C. Regression of organ damage following renal denervation in resistant hypertension: a meta-analysis. J. Hypertens. 2018;36(8):1614–1621. DOI:10.1097/HJH.0000000000001798.; Rodríguez-Leor O., Jaén-águila F., Segura J., Núñez-Gil I.J., García-Touchard A., Rubio E. et al. Renal denervation for the management of hypertension. Joint position statement from the SEH-LELHA and the ACI-SEC. REC Interv. Cardiol. 2022;4:39–46. DOI:10.24875/RECICE.M21000235.; Зюбанова И.В., Фальковская А.Ю., Мордовин В.Ф., Манукян М.А., Пекарский С.Е., Личикаки В.А. и др. Особенности изменения бета-адренореактивности мембран эритроцитов у больных резистентной артериальной гипертензией после ренальной денервации, взаимосвязь с антигипертензивной и кардиопротективной эффективностью вмешательства. Кардиология. 2021;61(8):32–39. DOI:10.18087/cardio.2021.8.n1556.; https://www.sibjcem.ru/jour/article/view/2424

  7. 7
    Academic Journal

    Πηγή: Bulletin of Medical Science; Vol. 32 No. 4 (2023): Bulletin of Medical Science; 94-104 ; Бюллетень медицинской науки; Том 32 № 4 (2023): Бюллетень медицинской науки; 94-104 ; 2541-8475

    Περιγραφή αρχείου: application/pdf

  8. 8
  9. 9
  10. 10
    Academic Journal

    Συγγραφείς: Maria, COCIU

    Πηγή: Bulletin of the Academy of Sciences of Moldova. Medical Sciences; Vol. 72 No. 1 (2022): Medical Sciences; 135-140 ; Buletinul Academiei de Științe a Moldovei. Științe medicale; Vol. 72 Nr. 1 (2022): Ştiinţe medicale; 135-140 ; Вестник Академии Наук Молдовы. Медицина; Том 72 № 1 (2022): Медицина; 135-140 ; 1857-0011 ; 10.52692/1857-0011.2022.1-72

    Περιγραφή αρχείου: application/pdf

  11. 11
  12. 12
  13. 13
  14. 14
    Academic Journal
  15. 15
    Academic Journal

    Συνεισφορές: Обзор написан при финансовой поддержке Российского научного фонда (проект № 19-75-00060).

    Πηγή: Vestnik Moskovskogo universiteta. Seriya 16. Biologiya; Том 75, № 2 (2020); 55-64 ; Вестник Московского университета. Серия 16. Биология; Том 75, № 2 (2020); 55-64 ; 0137-0952

    Περιγραφή αρχείου: application/pdf

    Relation: https://vestnik-bio-msu.elpub.ru/jour/article/view/869/507; Fogarty M.J., Sieck G.C. Evolution and functional differentiation of the diaphragm muscle of mammals // Compr. Physiol. 2019. Vol. 9. N 2. P. 715–766.; Manohar M. Costal vs. crural diaphragmatic blood flow during submaximal and near-maximal exercise in ponies // J. Appl. Physiol. 1988. Vol. 65. N 4. P. 1514–1519.; Kirkton S.D., Howlett R.A., Gonzalez N.C., Giuliano P.G., Britton S.L., Koch L.G., Wagner H.E., Wagner P.D. Continued artificial selection for running endurance in rats is associated with improved lung function // J. Appl. Physiol. 2009. Vol. 106. N 6. P. 1810–1818.; Rosser-Stanford B., Backx K., Lord R., Williams E.M. Static and dynamic lung volumes in swimmers and their ventilatory response to maximal exercise // Lung. 2019. Vol. 197. N 1. P. 15–19.; Neder J.A., Dal Corso S., Malaguti C., Reis S., De Fuccio M.B., Schmidt H., Fuld J.P., Nery L.E. The pattern and timing of breathing during incremental exercise: A normative study // Eur. Respir. J. 2003. Vol. 21. N 3. P. 530–538.; Fogarty M.J., Mantilla C.B., Sieck G.C. Breathing: Motor control of diaphragm muscle // Physiology (Bethesda). 2018. Vol. 33. N 2. P. 113–126.; Schiaffino S., Reggiani C. Fiber types in mammalian skeletal muscles // Physiol. Rev. 2011. Vol. 91. N 4. P. 1447–1531.; Schiaffino S., Sandri M., Murgia M. Activitydependent signaling pathways controlling muscle diversity and plasticity // Physiology (Bethesda). 2007. Vol. 22. N 4. P. 269–278.; Bloemberg D., Quadrilatero J. Rapid determination of myosin heavy chain expression in rat, mouse, and human skeletal muscle using multicolor immunofluorescence analysis // PLoS One. 2012. Vol. 7. N 4: e35273.; Delp M.D., Duan C. Composition and size of type I, IIA, IID/X, and IIB fibers and citrate synthase activity of rat muscle // J. Appl. Physiol. 1996. Vol. 80. N 1. P. 261–270.; Тарасова О.С., Каленчук В.У., Борзых А.А., Андреев-Андриевский А.А, Буравков С.В., Шарова А.П., Виноградова О.Л. Сравнение вазомоторных реакций и иннервации мелких артерий локомоторной и дыхательной мускулатуры у крыс // Биофизика. 2008. Т. 53. №. 6. С. 1095–1102.; Borzykh A.A., Andreev-Andrievskiy A.A., Kalenchuk V.U., Mochalov S.V., Buravkov S.V., Kuzmin I.V., Borovik A.S., Vinogradova O.L., Tarasova O.S. Strategies of adaptation of small arteries in diaphragm and gastrocnemius muscle to aerobic exercise training // Hum. Physiol. 2017. Vol. 43. N 4. P. 437–445.; Metzger J.M., Scheidt K.B., Fitts R.H. Histochemical and physiological characteristics of the rat diaphragm // J. Appl. Physiol. 1985. Vol. 58. N 4. P. 1085–1091.; Борзых А.А., Гайнуллина Д.К., Кузьмин И.В., Шарова А.П., Тарасова О.С., Виноградова О.Л. Сравнительный анализ экспрессии генов в локомоторных мышцах и диафрагме крысы // Рос. физиол. журн. им. И.М. Сеченова. 2012. Т. 98. № 12. С. 1587–1594.; Uribe J.M., Stump C.S., Tipton C.M., Fregosi R.F. Influence of exercise training on the oxidative capacity of rat abdominal muscles // Respir. Physiol. 1992. Vol. 88. N 1–2. P. 171–180.; Metzger J.M., Fitts R.H. Contractile and biochemical properties of diaphragm: effects of exercise training and fatigue // J. Appl. Physiol. 1986. Vol. 60. N 5. P. 1752–1758.; Popov D.V. Adaptation of skeletal muscles to contractile activity of varying duration and intensity: the role of PGC-1α // Biochemistry (Moscow). 2018. Vol. 83. N 6. P. 613–628.; Suzuki J. Microvascular remodelling after endurance training with Co 2+ treatment in the rat diaphragm and hindleg muscles // Jpn. J. Physiol. 2002. Vol. 52. N 5. P. 409–419.; Gute D., Fraga C., Laughlin M.H., Amann J.F. Regional changes in capillary supply in skeletal muscle of high-intensity endurance-trained rats // J. Appl. Physiol. 1996. Vol. 81. N 2. P. 619–626.; Green H.J., Plyley M.J., Smith D.M., Kile J.G. Extreme endurance training and fiber type adaptation in rat diaphragm // J. Appl. Physiol. 1989. Vol. 66. N 4. P. 1914–1920.; Gosselin L.E., Betlach M., Vailas A.C., Thomas D.P. Training-induced alterations in young and senescent rat diaphragm muscle // J. Appl. Physiol. 1992. Vol. 72. N 4. P. 1506–1511.; Domínguez-Álvarez M., Gea J., Barreiro E. Inflammatory events and oxidant production in the diaphragm, gastrocnemius, and blood of rats exposed to chronic intermittent hypoxia: therapeutic strategies // J. Cell. Physiol. 2017. Vol. 232. N 5. P. 1165–1175.; Armstrong R.B., Laughlin M.H. Metabolic indicators of fibre recruitment in mammalian muscles during locomotion // J. Exp. Biol. 1985. Vol. 115. P. 201–213.; Joyner M.J., Casey D.P. Regulation of increased blood flow (Hyperemia) to muscles during exercise: A hierarchy of competing physiological needs // Physiol. Rev. 2015. Vol. 95. N 2. P. 549–601.; Murrant C.L., Sarelius I.H. Local control of blood flow during active hyperaemia: What kinds of integration are important? // J. Physiol. 2015. Vol. 593. N 21. P. 4699–4711.; Sexton W.L., Poole D.C. Costal diaphragm blood flow heterogeneity at rest and during exercise // Respir. Physiol. 1995. Vol. 101. N 2. P. 171–182.; Laughlin M.H., Armstrong R.B. Rat muscle blood flows as a function of time during prolonged slow treadmill exercise // Am. J. Physiol. 1983. Vol. 244. N 6. P. H814–824.; Sarelius I., Pohl U. Control of muscle blood flow during exercise: local factors and integrative mechanisms // Acta Physiol. (Oxf.). 2010. Vol. 199. N 4. P. 349–365.; Bagher P., Segal S.S. Regulation of blood flow in the microcirculation: Role of conducted vasodilation // Acta Physiologica. 2011. Vol. 202. N 3. P. 271–284.; Мелькумянц А.М. О роли эндотелиального гликокаликса в механогенной регуляции сопротивления артериальных сосудов // Успехи физиол. наук. 2012. Т. 43. № 4. С. 45–58.; Fixler D.E., Atkins J.M., Mitchell J.H., Horwitz L.D. Blood flow to respiratory, cardiac, and limb muscles in dogs during graded exercise // Am. J. Physiol. 1976. Vol. 231. N 5. P. 1515–1519.; Manohar M. Inspiratory and expiratory muscle perfusion in maximally exercised ponies // J. Appl. Physiol. 1990. Vol. 68. N 2. P. 544–548.; Nobrega A.C.L., O’Leary D., Silva B.M., Marongiu E., Piepoli M.F., Crisafulli A. Neural regulation of cardiovascular response to exercise: role of central command and peripheral afferents // Biomed Res. Int. 2014. Vol. 2014. P. 478965.; O’Leary D.S., Robinson E.D., Butler J.L. Is active skeletal muscle functionally vasoconstricted during dynamic exercise in conscious dogs? // Am. J. Physiol. 1997. Vol. 272. N 1. P. R386–R391.; Manohar M. Vasodilator reserve in respiratory muscles during maximal exertion in ponies // J. Appl. Physiol (1985). 1986. Vol. 60. N 5. P. 1571–1577.; Sheel A.W., Boushel R., Dempsey J.A. Competition for blood flow distribution between respiratory and locomotor muscles: Implications for muscle fatigue // J. Appl. Physiol. 2018. Vol. 125. N 3. P. 820–831.; Dempsey J.A., Romer L., Rodman J., Miller J., Smith C. Consequences of exercise-induced respiratory muscle work // Respir. Physiol. Neurobiol. 2006. Vol. 151. N 2–3. P. 242–250.; Laughlin M.H., Armstrong R.B. Adrenoreceptor effects on rat muscle blood flow during treadmill exercise // J. Appl. Physiol. 1987. Vol. 62. N 4. P. 1465–1472.; Behnke B.J., Armstrong R.B., Delp M.D. Adrenergic control of vascular resistance varies in muscles composed of different fiber types: Influence of the vascular endothelium // Am. J. Physiol. Regul. Integr. Comp. Physiol. 2011. Vol. 301. N 3. P. R783–R790.; Hilton S.M., Jeffries M.G., Vrbová G. Functional specializations of the vascular bed of soleus // J. Physiol. 1970. Vol. 206. N 3. P. 543–562.; Aaker A., Laughlin M.H. Diaphragm arterioles are less responsive to alpha1-adrenergic constriction than gastrocnemius arterioles // J. Appl. Physiol. 2002. Vol. 92. N 5. P. 1808–1816.; Laughlin M.H., Woodman C.R., Schrage W.G., Gute D., Price E.M. Interval sprint training enhances endothelial function and eNOS content in some arteries that perfuse white gastrocnemius muscle // J. Appl. Physiol. 2004. Vol. 96. N 1. P. 233–244.; Van Teeffelen J.W.G.E., Segal S.S. Interaction between sympathetic nerve activation and muscle fibre contraction in resistance vessels of hamster retractor muscle // J Physiol. 2003. Vol. 550. N. 2. P. 563–574.; McCurdy M.R., Colleran P.N., Muller-Delp J., Delp M.D. Effects of fiber composition and hindlimb unloading on the vasodilator properties of skeletal muscle arterioles // J. Appl. Physiol. 2000. Vol. 89. N 1. P. 398–405.; Schwartz L.M., McKenzie J.E. Adenosine and active hyperemia in soleus and gracilis muscle of cats // Am. J. Physiol. 1990. Vol. 259. N 4. P. H1295–H1304.; Muller-Delp J.M., Spier S.A., Ramsey M.W., Delp M.D. Aging impairs endothelium-dependent vasodilation in rat skeletal muscle arterioles // Am. J. Physiol. Heart Circ. Physiol. 2002. Vol. 283. N 4. P. H1662–H1672.; Aaker A., Laughlin M.H. Differential adenosine sensitivity of diaphragm and skeletal muscle arterioles // J. Appl. Physiol. 2002. Vol. 93. N 3. P. 848–856.; Гайнуллина Д.К., Кирюхина О.О., Тарасова О.С. Оксид азота в эндотелии сосудов: регуляция продукции и механизмы действия // Успехи физиол. наук. 2013. Т. 44. № 4. С. 88–102.; McAllister R.M. Endothelium-dependent vasodilation in different rat hindlimb skeletal muscles // J. Appl. Physiol. 2003. Vol. 94. N 5. P. 1777–1784.; Copp S.W., Holdsworth C.T., Ferguson S.K., Hirai D.M., Poole D.C., Musch T.I. Muscle fibre-type dependence of neuronal nitric oxide synthase-mediated vascular control in the rat during high speed treadmill running // J. Physiol. 2013. Vol. 591. N 11. P. 2885–2896.; Shipley R.D., Kim S.J., Muller-Delp J.M. Time course of flow-induced vasodilation in skeletal muscle: contributions of dilator and constrictor mechanisms // Am. J. Physiol. Heart Circ. Physiol. 2005. Vol. 288. N 4. P. H1499–H1507.; Александрова Н.П., Баранов В.М., Тихонов М.А., Колесников В.И., Котов А.Н., Кочанов В.С. Влияние антиортостатической гипокинезии на функциональное состояние диафрагмы у крыс // Рос. физиол. журн. им. И.М. Сеченова. 2005. Vol. 91. N 11. P. 1312–1319.; Neder J.A., Marillier M., Bernard A., Matthew J.D., Kathryn M.M., O’Donnell D.E. The integrative physiology of exercise training in patients with COPD // COPD: 2019. Vol. 16. N 2. P. 182–195.; Illi S.K. Held U., Frank I., Spengler C.M. Effect of respiratory muscle training on exercise performance in healthy individuals: A systematic review and metaanalysis // Sports Med. 2012. Vol. 42. N 8. P. 707–724.

  16. 16
  17. 17
  18. 18
  19. 19
    Academic Journal

    Πηγή: Сборник статей

    Περιγραφή αρχείου: application/pdf

    Relation: Актуальные вопросы современной медицинской науки и здравоохранения: сборник статей IV Международной научно-практической конференции молодых учёных и студентов, IV Всероссийского форума медицинских и фармацевтических вузов «За качественное образование», (Екатеринбург, 10-12 апреля 2019): в 3-х т. - Екатеринбург: УГМУ, CD-ROM.; http://elib.usma.ru/handle/usma/4146

    Διαθεσιμότητα: http://elib.usma.ru/handle/usma/4146

  20. 20
    Academic Journal

    Πηγή: Siberian Journal of Clinical and Experimental Medicine; Том 34, № 3 (2019); 21-32 ; Сибирский журнал клинической и экспериментальной медицины; Том 34, № 3 (2019); 21-32 ; 2713-265X ; 2713-2927 ; 10.29001/2073-8552-2019-34-3

    Περιγραφή αρχείου: application/pdf

    Relation: https://www.sibjcem.ru/jour/article/view/809/465; Global health risks. Мortality and burden of disease attributable to selected major risks. Geneva: World Health Organization; 2009:62.; Forouzanfar M.H., Liu P., Roth G.A., Ng M., Biryukov S. Marczak L. et al. Global burden of hypertension and systolic blood pressure of at least 110 to 115 mm Hg, 1990–2015. JAMA. 2017;317(2):165–182. DOI:10.1001/jama.2016.19043.; Heart disease and stroke statistics-2017 update. A report from the American Heart Association. Circulation. 2017;135:e146–e603. DOI:10.1161/CIR.0000000000000485.; Heilbrunn S.M., Shah P., Bristow M.R., Valantine H.A., Ginsburg R., Fowler M.B. Increased beta-receptor density and improved hemodynamic response to catecholamine stimulation during long-term metoprolol therapy in heart failure from dilated cardiomyopathy. Circulation. 1989;79(3):483–490.; Kramkowski K., Mogielnicki A., Buczko W. The physiological significance of the alternative pathways of angiotensin II production. J. Physiol. Pharmacol. 2006;57(4):529–539.; Zisaki A., Miskovic L., Hatzimanikatis V. Antihypertensive drugs metabolism: an update to pharmacokinetic profiles and computational approaches. Current. Pharmaceutical Design. 2015;21:806–822.; Judd E., Calhoun D.A. Apparent and true resistant hypertension: definition, prevalence and outcomes. J. Hum. Hypertens. 2014;28(8):463– 468. DOI:10.1038/jhh.2013.140.; Bramlage P., Hasford J. Blood pressure reduction, persistence and costs in the evaluation of antihypertensive drug treatment-a review. Cardiovascular. Diabetology. 2009;27(8):18. DOI:10.1186/1475-2840-8-18.; Morris A.B., Li J., Kroenke K., Bruner-England T.E., Young J.M., Murrey M.D. et al. Factors associated with drug adherence and blood pressure control in patients with hypertension. Pharmacotherapy. 2006; 26(4):483–492. DOI:10.1592/phco.26.4.483.; Crowe D.A., Goodwin S.J., Blackman R.K., Sakellaridi S., Sponheim S.R., MacDonald A.W. et al. Prefrontal neurons transmit signals to parietal neurons that reflect executive control of cognition. Nat. Neurosci. 2013;16(10):1484–1491. DOI:10.1038/nn.3509.; Vohs K.D., Baumeister R.F., Schmeichel B.J., Twenge J.M., Nelson N.M., Tice D.M. Making choices impairs subsequent self-control: a limited-resource account of decision making, f-regulation, and active initiative. J. Pers. Soc. Psychol. 2008;94(5):883–898. DOI:10.1037/0022-3514.94.5.883.; Cramer J.A., Benedict A., Muszbek N., Keskinalsan A., Khan Z.M. The significance of compliance and persistence in the treatment of diabetes, hypertension and dyslipidaemia: a review. Int. J. Clin. Pract. 2008;62(1):76–87. DOI:10.1111/j.1742-1241.2007.01630.x.; Krum H., Schlaich M., Whitbourn R., Sobotka P.A., Sadowski J., Bartus K. et al. Catheter-based renal sympathetic denervation for resistant hypertension: a multicentre safety and proof-of-principle cohort study. Lancet. 2009;11;373(9671):1275–1281. DOI:10.1016/S0140-6736(09)60566-3.; Esler M.D., Krum H., Sobotka P.A., Schlaich M.P., Schmieder R.E., Böhm M. Renal sympathetic denervation in patients with treatment-resistant hypertension (The Symplicity HTN-2 Trial): a randomised controlled trial. Lancet. 2010;4;376(9756):1903–1909. DOI:10.1016/S0140-6736(10)62039-9.; Bhatt D.L., Kandzari D.E., O’Neill W.W., D’Agostino R., Flack J.M., Katzen B.T. et al. A controlled trial of renal denervation for resistant hypertension. N. Engl. J. Med. 2014;10;370(15):1393–1401. DOI:10.1056/ NEJMoa1402670.; Kandzari D.E., Bhatt D.L., Brar S., Devireddy C.M., Esler M., Fahy M. et al. Predictors of blood pressure response in the SYMPLICITY HTN-3 trial. Eur. Heart J. 2015;36:219–227. DOI:10.1093/eurheartj/ehu441.; Pekarskiy S., Baev A., Mordovin V., Semke G., Ripp T., Falkovskaya A. et al. Denervation of the distal renal arterial branches vs. conventional main renal artery treatment: a randomized controlled trial for treatment of resistant hypertension. Journal of Hypertension. 2017;35(2):369–375. DOI:10.1097/HJH.0000000000001160.; Townsend R.R., Mahfoud F., Kandzari D.E. et al. Catheter-based renal denervation in patients with uncontrolled hypertension in the absence of antihypertensive medications (SPYRAL HTNOFF MED): a randomised, sham-controlled, proof-of-concept trial. Lancet. 2017;390:2160–2170. DOI:10.1016/S0140-6736(17)32281-X.; Kandzari D.E., Bohm M., Mahfoud F., Townsend R.R., Weber M.A., Pocock S. et al. Effect of renal denervation on blood pressure in the presence of antihypertensive drugs: 6-month efficacy and safety results from the SPYRAL HTN-ON MED proof-of-concept randomized trial. Lancet. 2018;391:2346–2355. DOI:10.1016/S0140-6736(18)30951-6.; Azizi M., Schmieder R.E., Mahfoud F., Weber MA., Daemen J., Davies J. et al. Endovascular ultrasound renal denervation to treat hypertension (RADIANCE-HTN SOLO): a multicentre, international, single-blind, randomised, sham-controlled trial. Lancet. 2018;391:2335–2345. DOI:10.1016/S0140-6736(18)31082-1.; Ettehad D., Emdin C.A., Kiran A., Anderson S.G., Callender T., Emberson J. et al. Blood pressure lowering for prevention of cardiovascular disease and death: a systematic review and meta-analysis. Lancet. 2016;387(10022):957–967. DOI:10.1016/S0140-6736(15)01225-8.; https://www.sibjcem.ru/jour/article/view/809