Εμφανίζονται 1 - 20 Αποτελέσματα από 97 για την αναζήτηση '"РЕВМАТИЧЕСКИЕ БОЛЕЗНИ"', χρόνος αναζήτησης: 2,94δλ Περιορισμός αποτελεσμάτων
  1. 1
    Academic Journal
  2. 2
    Academic Journal
  3. 3
    Academic Journal

    Συγγραφείς: E. L. Nasonov, Е. Л. Насонов

    Συνεισφορές: Исследование не имело спонсорской поддержки.

    Πηγή: Rheumatology Science and Practice; Vol 0, No 0 (0) ; Научно-практическая ревматология; Vol 0, No 0 (0) ; 1995-4492 ; 1995-4484 ; undefined

    Περιγραφή αρχείου: application/pdf

    Relation: https://rsp.mediar-press.net/rsp/article/view/3392/2298; Medzhitov R. The spectrum of inflammatory responses. Science. 2021;374(6571):1070-1075. doi:10.1126/science.abi5200; Furman D, Campisi J, Verdin E, Carrera-Bastos P, Targ S, Franceschi C, et al. Chronic inflammation in the etiology of disease across the life span. Nat Med. 2019;25(12):1822-1832. doi:10.1038/s41591-019-0675-0; McGonagle D, McDermott MF. A proposed classification of the immunological diseases. PLoS Med. 2006;3(8):e297. doi:10.1371/journal.pmed.0030297; Szekanecz Z, McInnes IB, Schett G, Szamosi S, Benkő S, Szűcs G. Autoinflammation and autoimmunity across rheumatic and musculoskeletal diseases. Nat Rev Rheumatol. 2021;17(10):585-595. doi:10.1038/s41584-021-00652-9; Kerner G, Neehus AL, Philippot Q, Bohlen J, Rinchai D, Kerrouche N, et al. Genetic adaptation to pathogens and increased risk of inflammatory disorders in post-Neolithic Europe. Cell Genom. 2023;3(2):100248. doi:10.1016/j.xgen.2022.100248; Hedrich CM, Tsokos GC. Bridging the gap between autoinflammation and autoimmunity. Clin Immunol. 2013;147(3):151-154. doi:10.1016/j.clim.2013.03.006; Peckham D, Scambler T, Savic S, McDermott MF. The burgeoning field of innate immune-mediated disease and autoinflammation. J Pathol. 2017;241(2):123-139. doi:10.1002/path.4812; Theofilopoulos AN, Kono DH, Baccala R. The multiple pathways to autoimmunity. Nat Immunol. 2017;18(7):716-724. doi:10.1038/ni.3731; Hedrich CM. Shaping the spectrum – From autoinflammation to autoimmunity. Clin Immunol. 2016;165:21-28. doi:10.1016/j.clim.2016.03.002; Bluestone JA. Mechanisms of tolerance. Immunol Rev. 2011;24(1):5-19. doi:10.1111/j.1600-065X.2011.01019.x; Stanway JA, Isaacs JD. Tolerance-inducing medicines in autoimmunity: Rheumatology and beyond. Lancet Rheumatol. 2020;2(9):e565-e575. doi:10.1016/S2665-9913(20)30100-4; Насонов ЕЛ, Александрова ЕН, Авдеева АС, Рубцов ЮП. Т-регуляторные клетки при ревматоидном артрите. Научнопрактическая ревматология. 2014;52(4):430-437. doi:10.14412/1995-4484-2014-430-437; Dominguez-Villar M, Hafler DA. Regulatory T cells in autoimmune disease. Nat Immunol. 2018;19(7):665-673. doi:10.1038/s41590-018-0120-4; Yasuda K, Takeuchi Y, Hirota K. The pathogenicity of Th17 cells in autoimmune diseases. Semin Immunopathol. 2019;41(3):283-297. doi:10.1007/s00281-019-00733-8; Salinas GF, Braza F, Brouard S, Tak PP, Baeten D. The role of B lymphocytes in the progression from autoimmunity to autoimmune disease. Clin Immunol. 2013;146(1):34-45. doi:10.1016/j.clim.2012.10.005; Moudgil KD, Choubey D. Cytokines in autoimmunity: Role in induction, regulation, and treatment. J Interferon Cytokine Res. 2011;31(10):695-703. doi:10.1089/jir.2011.0065; Chetaille Nézondet AL, Poubelle PE, Pelletier M. The evaluation of cytokines to help establish diagnosis and guide treatment of autoinflammatory and autoimmune diseases. J Leukoc Biol. 2020;108(2):647-657. doi:10.1002/JLB.5MR0120-218RRR; Kochi Y. Genetics of autoimmune diseases: Perspectives from genome-wide association studies. Int Immunol. 2016;28(4):155-161. doi:10.1093/intimm/dxw002; Cho JH, Gregersen PK. Genomics and the multifactorial nature of human autoimmune disease. N Engl J Med. 2011;365(17):1612-1623. doi:10.1056/NEJMra1100030; Ballestar E, Sawalha AH, Lu Q. Clinical value of DNA methylation markers in autoimmune rheumatic diseases. Nat Rev Rheumatol. 2020;16(9):514-524. doi:10.1038/s41584-020-0470-9; Blanco LP, Kaplan MJ. Metabolic alterations of the immune system in the pathogenesis of autoimmune diseases. PLoS Biol. 2023;21(4):e3002084. doi:10.1371/journal.pbio.3002084; Rosenblum MD, Remedios KA, Abbas AK. Mechanisms of human autoimmunity. J Clin Invest. 2015;125(6):2228-2233. doi:10.1172/JCI78088; Wang L, Wang FS, Gershwin ME. Human autoimmune diseases: A comprehensive update. J Intern Med. 2015;278(4):369-395. doi:10.1111/joim.12395; Liu E, Perl A. Pathogenesis and treatment of autoimmune rheumatic diseases. Curr Opin Rheumatol. 2019;31(3):307-315. doi:10.1097/BOR.0000000000000594; Pisetsky DS. Pathogenesis of autoimmune disease. Nat Rev Nephrol. 2023 May 10:1-16. doi:10.1038/s41581-023-00720-1; Sundaresan B, Shirafkan F, Ripperger K, Rattay K. The role of viral infections in the onset of autoimmune diseases. Viruses. 2023;15(3):782. doi:10.3390/v15030782; Schett G, McInnes IB, Neurath MF. Reframing immune-mediated inflammatory diseases through signature cytokine hubs. N Engl J Med. 2021;385(7):628-639. doi:10.1056/NEJMra1909094; van Wesemael TJ, Huizinga TWJ, Toes REM, an der Woude D. From phenotype to pathophysiology – Placing rheumatic diseases in an immunological perspective. Lancet Rheumatol. 2022;4(3): e166-e167. doi:10.1016/S2665-9913(21)00369-6; Moutsopoulos HM. Autoimmune rheumatic diseases: One or many diseases? J Transl Autoimmun. 2021;4:100129. doi:10.1016/j.jtauto.2021.100129; Barturen G, Beretta L, Cervera R, Van Vollenhoven R, AlarcónRiquelme ME. Moving towards a molecular taxonomy of autoimmune rheumatic diseases. Nat Rev Rheumatol. 2018;14(2):75-93. doi:10.1038/nrrheum.2017.220; Насонов ЕЛ, Александрова ЕН, Новиков АА. Аутоиммунные ревматические заболевания – проблемы иммунопатологии и персонифицированной терапии. Вестник РАМН. 2015;70(2): 169-182. doi:10.15690/vramn.v70i2.1310; Buckley CD, Chernajovsky L, Chernajovsky Y, Modis LK, O’Neill LA, Brown D, et al. Immune-mediated inflammation across disease boundaries: Breaking down research silos. Nat Immunol. 2021;22(11):1344-1348. doi:10.1038/s41590-021-01044-7; Radner H, Yoshida K, Smolen JS, Solomon DH. Multimorbidity and rheumatic conditions-enhancing the concept of comorbidity. Nat Rev Rheumatol. 2014;10(4):252-256. doi:10.1038/nrrheum.2013.212; Насонов ЕЛ, Александрова ЕН, Новиков АА. Аутоиммунные ревматические заболевания: итоги и перспективы научных исследований. Научно-практическая ревматология. 2015;53(3): 230-237. doi:10.14412/1995-4484-2015-230-237; McGonagle D, Aydin SZ, Gül A, Mahr A, Direskeneli H. ‘MHCI-opathy’-unified concept for spondyloarthritis and Behçet disease. Nat Rev Rheumatol. 2015;11(12):731-740. doi:10.1038/nrrheum.2015.147; Kuiper JJ, Prinz JC, Stratikos E, Kuśnierczyk P, Arakawa A, Springer S, et al.; EULAR studygroup MHC-I-opathies. EULAR study group on ‘MHC-I-opathy’: Identifying disease-overarching mechanisms across disciplines and borders. Ann Rheum Dis. 2023;82(7):887-896. doi:10.1136/ard-2022-222852; Scrivo R, D’Angelo S, Carriero A, Castellani C, Perrotta FM, Conti F, et al. The conundrum of psoriatic arthritis: A pathogenetic and clinical pattern at the midpoint of autoinflammation and autoimmunity. Clin Rev Allergy Immunol. 2023;65(1):72-85. doi:10.1007/s12016-021-08914-w; Mauro D, Thomas R, Guggino G, Lories R, Brown MA, Ciccia F. Ankylosing spondylitis: An autoimmune or autoinflammatory disease? Nat Rev Rheumatol. 2021;17(7):387-404. doi:10.1038/s41584-021-00625-y; McGonagle D, Watad A, Savic S. Mechanistic immunological based classification of rheumatoid arthritis. Autoimmun Rev. 2018;17(11):1115-1123. doi:10.1016/j.autrev.2018.06.001; Shin JI, Lee KH, Joo YH, Lee JM, Jeon J, Jung HJ, et al. Inflammasomes and autoimmune and rheumatic diseases: A comprehensive review. J Autoimmun. 2019;103:102299. doi:10.1016/j.jaut.2019.06.010; Kahlenberg JM, Kang I. Advances in disease mechanisms and translational technologies: Clinicopathologic significance of inflammasome activation in autoimmune diseases. Arthritis Rheumatol. 2020;72(3):386-395. doi:10.1002/art.41127; Eaton WW, Nguyen TQ, Pedersen MG, Mortensen PB, Rose NR. Comorbidity of autoimmune diseases: A visual presentation. Autoimmun Rev. 2020;19(10):102638. doi:10.1016/j.autrev.2020.102638; Rojas M, Ramírez-Santana C, Acosta-Ampudia Y, Monsalve DM, Rodriguez-Jimenez M, Zapata E, et al. New insights into the taxonomy of autoimmune diseases based on polyautoimmunity. J Autoimmun. 2022;126:102780. doi:10.1016/j.jaut.2021.102780; Frazzei G, van Vollenhoven RF, de Jong BA, Siegelaar SE, van Schaardenburg D. Preclinical autoimmune disease: A comparison of rheumatoid arthritis, systemic lupus erythematosus, multiple sclerosis and type 1 diabetes. Front Immunol. 2022;13:899372. doi:10.3389/fimmu.2022.899372; Ma WT, Chang C, Gershwin ME, Lian ZX. Development of autoantibodies precedes clinical manifestations of autoimmune diseases: A comprehensive review. J Autoimmun. 2017;83:95-112. doi:10.1016/j.jaut.2017.07.003; Bieber K, Hundt JE, Yu X, Ehlers M, Petersen F, Karsten CM, et al. Autoimmune pre-disease. Autoimmun Rev. 2023;22(2):103236. doi:10.1016/j.autrev.2022.103236; McInnes IB, Gravallese EM. Immune-mediated inflammatory disease therapeutics: Past, present and future. Nat Rev Immunol. 2021;21(10):680-686. doi:10.1038/s41577-021-00603-1; Miller FW. The increasing prevalence of autoimmunity and autoimmune diseases: An urgent call to action for improved understanding, diagnosis, treatment, and prevention. Curr Opin Immunol. 2023;80:102266. doi:10.1016/j.coi.2022.102266; Conrad N, Misra S, Verbakel JY, Verbeke G, Molenberghs G, Taylor PN, et al. Incidence, prevalence, and co-occurrence of autoimmune disorders over time and by age, sex, and socioeconomic status: A population-based cohort study of 22 million individuals in the UK. Lancet. 2023;401(10391):1878-1890. doi:10.1016/S0140-6736(23)00457-9; Jacobson DL, Gange SJ, Rose NR, Graham NM. Epidemiology and estimated population burden of selected autoimmune diseases in the United States. Clin Immunol Immunopathol. 1997;84(3):223-243. doi:10.1006/clin.1997.4412; Thomas SL, Griffiths C, Smeeth L, Rooney C, Hall AJ. Burden of mortality associated with autoimmune diseases among females in the United Kingdom. Am J Public Health. 2010;100(11):2279-2287. doi:10.2105/AJPH.2009.180273; Mitratza M, Klijs B, Hak AE, Kardaun JWPF, Kunst AE. Systemic autoimmune disease as a cause of death: mortality burden and comorbidities. Rheumatology (Oxford). 2021;60(3):1321-1330. doi:10.1093/rheumatology/keaa537; David T, Ling SF, Barton A. Genetics of immune-mediated inflammatory diseases. Clin Exp Immunol. 2018;193(1):3-12. doi:10.1111/cei.13101; Zhang HG, McDermott G, Seyok T, Huang S, Dahal K, L’Yi S, et al. Identifying shared genetic architecture between rheumatoid arthritis and other conditions: A phenome-wide association study with genetic risk scores. EBioMedicine. 2023;92:104581. doi:10.1016/j.ebiom.2023.104581; Tizaoui K, Terrazzino S, Cargnin S, Lee KH, Gauckler P, Li H, et al. The role of PTPN22 in the pathogenesis of autoimmune diseases: A comprehensive review. Semin Arthritis Rheum. 2021;51(3):513-522. doi:10.1016/j.semarthrit.2021.03.004; Coss SL, Zhou D, Chua GT, Aziz RA, Hoffman RP, Wu YL, et al. The complement system and human autoimmune diseases. J Autoimmun. 2023;137:102979. doi:10.1016/j.jaut.2022.102979; Rodero MP, Crow YJ. Type I interferon-mediated monogenic autoinflammation: The type I interferonopathies, a conceptual overview. J Exp Med. 2016;213(12):2527-2538. doi:10.1084/jem.20161596; Costa F, Beltrami E, Mellone S, Sacchetti S, Boggio E, Gigliotti CL, et al. Genes and microbiota interaction in monogenic autoimmune disorders. Biomedicines. 2023;11(4):1127. doi:10.3390/biomedicines11041127; Cepika AM, Sato Y, Liu JM, Uyeda MJ, Bacchetta R, Roncarolo MG. Tregopathies: Monogenic diseases resulting in regulatory T-cell deficiency. J Allergy Clin Immunol. 2018;142(6):1679-1695. doi:10.1016/j.jaci.2018.10.026; Xiao F, Rui K, Shi X, Wu H, Cai X, Lui KO, et al. Epigenetic regulation of B cells and its role in autoimmune pathogenesis. Cell Mol Immunol. 2022;19(11):1215-1234. doi:10.1038/s41423-022-00933-7; Zhang L, Wu H, Zhao M, Chang C, Lu Q. Clinical significance of miRNAs in autoimmunity. J Autoimmun. 2020;109:102438. doi:10.1016/j.jaut.2020.102438; Cutolo M, Straub RH. Sex steroids and autoimmune rheumatic diseases: State of the art. Nat Rev Rheumatol. 2020;16(11):628-644. doi:10.1038/s41584-020-0503-4; Kopp W. Pathogenesis of (smoking-related) non-communicable diseases – Evidence for a common underlying pathophysiological pattern. Front Physiol. 2022;13:1037750. doi:10.3389/fphys.2022.1037750; Ishikawa Y, Terao C. The impact of cigarette smoking on risk of rheumatoid arthritis: A Narrative review. Cells. 2020;9(2):475. doi:10.3390/cells9020475; Holers VM, Demoruelle MK, Kuhn KA, Buckner JH, Robinson WH, Okamoto Y, et al. Rheumatoid arthritis and the mucosal origins hypothesis: Protection turns to destruction. Nat Rev Rheumatol. 2018;14(9):542-557. doi:10.1038/s41584-018-0070-0; Cutolo M, Smith V, Paolino S, Gotelli E. Involvement of the secosteroid vitamin D in autoimmune rheumatic diseases and COVID-19. Nat Rev Rheumatol. 2023;19(5):265-287. doi:10.1038/s41584-023-00944-2; Shaheen WA, Quraishi MN, Iqbal TH. Gut microbiome and autoimmune disorders. Clin Exp Immunol. 2022;209(2):161-174. doi:10.1093/cei/uxac057; Galgani M, Bruzzaniti S, Matarese G. Immunometabolism and autoimmunity. Curr Opin Immunol. 2020;67:10-17. doi:10.1016/j.coi.2020.07.002; Wong EKS, Kavanagh D. Diseases of complement dysregulation – An overview. Semin Immunopathol. 2018;40(1):49-64. doi:10.1007/s00281-017-0663-8; Baines AC, Brodsky RA. Complementopathies. Blood Rev. 2017;31(4):213-223. doi:10.1016/j.blre.2017.02.003; Chaturvedi S, Braunstein EM, Brodsky RA. Antiphospholipid syndrome: Complement activation, complement gene mutations, and therapeutic implications. J Thromb Haemost. 2021;19(3):607-616. doi:10.1111/jth.15082; Chaturvedi S, Braunstein EM, Yuan X, Yu J, Alexander A, et al. Complement activity and complement regulatory gene mutations are associated with thrombosis in APS and CAPS. Blood. 2020 Jan 23;135(4):239-251. doi:10.1182/blood.2019003863.; Rubin SJS, Bloom MS, Robinson WH. B cell checkpoints in autoimmune rheumatic diseases. Nat Rev Rheumatol. 2019;15(5):303-315. doi:10.1038/s41584-019-0211-0; Hendriks RW, Corneth OBJ. B cell signaling and activation in autoimmunity. Cells. 2023;12(3):499. doi:10.3390/cells12030499; de Gruijter NM, Jebson B, Rosser EC. Cytokine production by human B cells: Role in health and autoimmune disease. Clin Exp Immunol. 2022;210(3):253-262. doi:10.1093/cei/uxac090; Mouat IC, Goldberg E, Horwitz MS. Age-associated B cells in autoimmune diseases. Cell Mol Life Sci. 2022;79(8):402. doi:10.1007/s00018-022-04433-9; Ray A, Dittel BN. Mechanisms of regulatory B cell function in autoimmune and inflammatory diseases beyond IL-10. J Clin Med. 2017;6(1):12. doi:10.3390/jcm6010012; Jenks SA, Cashman KS, Zumaquero E, Marigorta UM, Patel AV, Wang X, et al. Distinct effector B cells induced by unregulated Toll-like receptor 7 contribute to pathogenic responses in systemic lupus erythematosus. Immunity. 2018;49(4):725-739.e6. doi:10.1016/j.immuni.2018.08.015; Jenks SA, Cashman KS, Woodruff MC, Lee FE, Sanz I. Extrafollicular responses in humans and SLE. Immunol Rev. 2019;288(1): 136-148. doi:10.1111/imr.12741; Vincent FB, Morand EF, Schneider P, Mackay F. The BAFF/ APRIL system in SLE pathogenesis. Nat Rev Rheumatol. 2014;10(6):365-373. doi:10.1038/nrrheum.2014.33; Stohl W, Hilbert DM. The discovery and development of belimumab: The anti-BLyS-lupus connection. Nat Biotechnol. 2012;30(1):69-77. doi:10.1038/nbt.2076; Насонов ЕЛ, Попкова ТВ, Лила АМ. Белимумаб в лечении системной красной волчанки: 20 лет фундаментальных исследований, 10 лет клинической практики. Научно-практическая ревматология. 2021;59(4):367-383. doi:10.47360/1995-4484-2021-367-383; Annunziato F, Romagnani C, Romagnani S. The 3 major types of innate and adaptive cell-mediated effector immunity. J Allergy Clin Immunol. 2015;135(3):626-635. doi:10.1016/j.jaci.2014.11.001; Насонов ЕЛ. Ингибиция иммунных контрольных точек и аутоиммунитет: ревматологические проблемы. Научно-практическая ревматология. 2018;56(1):5-9. doi:10.14412/1995-4484-2018-5-9; Khan S, Gerber DE. Autoimmunity, checkpoint inhibitor therapy and immune-related adverse events: A review. Semin Cancer Biol. 2020;64:93-101. doi:10.1016/j.semcancer.2019.06.012; Walker LSK. The link between circulating follicular helper T cells and autoimmunity. Nat Rev Immunol. 2022;22(9):567-575. doi:10.1038/s41577-022-00693-5; Воробьева НВ, Черняк БВ. НЕТоз: молекулярные механизмы, роль в физиологии и патологии. Биохимия. 2020;85(10):1383-1397. doi:10.31857/S0320972520100061; Papayannopoulos V. Neutrophil extracellular traps in immunity and disease. Nat Rev Immunol. 2018;18(2):134-147. doi:10.1038/nri.2017.105; Wigerblad G, Kaplan MJ. Neutrophil extracellular traps in systemic autoimmune and autoinflammatory diseases. Nat Rev Immunol. 2023;23(5):274-288. doi:10.1038/s41577-022-00787-0; Paget C, Doz-Deblauwe E, Winter N, Briard B. Specific NLRP3 inflammasome assembling and regulation in neutrophils: Relevance in inflammatory and infectious diseases. Cells. 2022;11(7):1188. doi:10.3390/cells11071188; Crow MK, Olferiev M, Kirou KA. Type I interferons in autoimmune disease. Annu Rev Pathol. 2019;14:369-393. doi:10.1146/annurev-pathol-020117-043952; Насонов ЕЛ, Авдеева АС. Иммуновоспалительные ревматические заболевания, связанные с интерфероном типа I: новые данные. Научно-практическая ревматология. 2019;57(4):452-461. doi:10.14412/1995-4484-2019-452-461; Postal M, Vivaldo JF, Fernandez-Ruiz R, Paredes JL, Appenzeller S, Niewold TB. Type I interferon in the pathogenesis of systemic lupus erythematosus. Curr Opin Immunol. 2020;67:87-94. doi:10.1016/j.coi.2020.10.014; Antiochos B, Casciola-Rosen L. Interferon and autoantigens: intersection in autoimmunity. Front Med (Lausanne). 2023;10:1165225. doi:10.3389/fmed.2023.1165225; Suurmond J, Diamond B. Autoantibodies in systemic autoimmune diseases: Specificity and pathogenicity. J Clin Invest. 2015;125(6):2194-2202. doi:10.1172/JCI78084; Pashnina IA, Krivolapova IM, Fedotkina TV, Ryabkova VA, Chereshneva MV, Churilov LP, et al. Antinuclear autoantibodies in health: autoimmunity is not a synonym of autoimmune disease. Antibodies (Basel). 2021;10(1):9. doi:10.3390/antib10010009; Dillon CF, Weisman MH, Miller FW. Population-based estimates of humoral autoimmunity from the U.S. National Health and Nutrition Examination Surveys, 1960–2014. PLoS One. 2020;15(1):e0226516. doi:10.1371/journal.pone.0226516; Dinse GE, Parks CG, Weinberg CR, Co CA, Wilkerson J, Zeldin DC, et al. Increasing prevalence of antinuclear antibodies in the United States. Arthritis Rheumatol. 2020;72(6):1026-1035. doi:10.1002/art.41214; Rivera-Correa J, Rodriguez A. Autoantibodies during infectious diseases: Lessons from malaria applied to COVID-19 and other infections. Front Immunol. 2022;13:938011. doi:10.3389/fimmu.2022.938011; Sakowska J, Arcimowicz Ł, Jankowiak M, Papak I, Markiewicz A, et al. Autoimmunity and cancer – Two sides of the same coin. Front Immunol. 2022;13:793234. doi:10.3389/fimmu.2022.793234; Porsch F, Mallat Z, Binder CJ. Humoral immunity in atherosclerosis and myocardial infarction: From B cells to antibodies. Cardiovasc Res. 2021;117(13):2544-2562. doi:10.1093/cvr/cvab285; Meier LA, Binstadt BA. The contribution of autoantibodies to inflammatory cardiovascular pathology. Front Immunol. 2018;9:911. doi:10.3389/fimmu.2018.00911; Prüss H. Autoantibodies in neurological disease. Nat Rev Immunol. 2021;21(12):798-813. doi:10.1038/s41577-021-00543-w; Matarese G. The link between obesity and autoimmunity. Science. 2023;379(6639):1298-1300. doi:10.1126/science.ade0113; Goebel A, Andersson D, Helyes Z, Clark JD, Dulake D, Svensson C. The autoimmune aetiology of unexplained chronic pain. Autoimmun Rev. 2022;21(3):103015. doi:10.1016/j.autrev.2021.103015; Ryabkova VA, Gavrilova NY, Poletaeva AA, Pukhalenko AI, Koshkina IA, Churilov LP, et al. Autoantibody correlation signatures in fibromyalgia and myalgic encephalomyelitis/chronic fatigue syndrome: Association with symptom severity. Biomedicines. 2023;11(2):257. doi:10.3390/biomedicines11020257; Malle L, Patel RS, Martin-Fernandez M, Stewart OJ, Philippot Q, Buta S, et al. Autoimmunity in Down’s syndrome via cytokines, CD4 T cells and CD11c+ B cells. Nature. 2023;615(7951):305-314. doi:10.1038/s41586-023-05736-y; Zhang T, Feng X, Dong J, Xu Z, Feng B, Haas KM, et al. Cardiac troponin T and autoimmunity in skeletal muscle aging. Geroscience. 2022;44(4):2025-2045. doi:10.1007/s11357-022-00513-7; Costagliola G, Cappelli S, Consolini R. Autoimmunity in primary immunodeficiency disorders: An updated review on pathogenic and clinical implications. J Clin Med. 2021;10(20):4729. doi:10.3390/jcm10204729; Shome M, Chung Y, Chavan R, Park JG, Qiu J, LaBaer J. Serum autoantibodyome reveals that healthy individuals share common autoantibodies. Cell Rep. 2022;39(9):110873. doi:10.1016/j.celrep.2022.110873; Burbelo PD, Iadarola MJ, Keller JM, Warner BM. Autoantibodies targeting intracellular and extracellular proteins in autoimmunity. Front Immunol. 2021;12:548469. doi:10.3389/fimmu.2021.548469; Ludwig RJ, Vanhoorelbeke K, Leypoldt F, Kaya Z, Bieber K, McLachlan SM, et al. Mechanisms of autoantibody-induced pathology. Front Immunol. 2017;8:603. doi:10.3389/fimmu.2017.00603; Александрова ЕН, Новиков АА, Насонов ЕЛ. Современные подходы к лабораторной диагностике ревматических заболеваний: роль молекулярных и клеточных биомаркеров. Научно-практическая ревматология. 2016;54(3):324-338. doi:10.14412/1995-4484-2016-324-338; Volkov M, Coppola M, Huizinga R, Eftimov F, Huizinga TWJ, van der Kooi AJ, et al.; T2B Consortium. Comprehensive overview of autoantibody isotype and subclass distribution. J Allergy Clin Immunol. 2022;150(5):999-1010. doi:10.1016/j.jaci.2022.05.023; Fritzler MJ, Choi MY, Satoh M, Mahler M. Autoantibody discovery, assay development and adoption: Death valley, the sea of survival and beyond. Front Immunol. 2021;12:679613. doi:10.3389/fimmu.2021.679613; Puel A, Bastard P, Bustamante J, Casanova JL. Human autoantibodies underlying infectious diseases. J Exp Med. 2022;219(4):e20211387. doi:10.1084/jem.20211387; Scherer HU, van der Woude D, Toes REM. From risk to chronicity: Evolution of autoreactive B cell and antibody responses in rheumatoid arthritis. Nat Rev Rheumatol. 2022;18(7):371-383. doi:10.1038/s41584-022-00786-4; Kissel T, Toes REM, Huizinga TWJ, Wuhrer M. Glycobiology of rheumatic diseases. Nat Rev Rheumatol. 2023;19(1):28-43. doi:10.1038/s41584-022-00867-4; Sokolova MV, Schett G, Steffen U. Autoantibodies in rheumatoid arthritis: Historical background and novel findings. Clin Rev Allergy Immunol. 2022;63(2):138-151. doi:10.1007/s12016-021-08890-1; Monahan RC, van den Beukel MD, Borggreven NV, Fronczek R, Huizinga TWJ, Kloppenburg M, et al. Autoantibodies against specific post-translationally modified proteins are present in patients with lupus and associate with major neuropsychiatric manifestations. RMD Open. 2022;8(1):e002079. doi:10.1136/rmdopen-2021-002079; Koneczny I. Update on IgG4-mediated autoimmune diseases: New insights and new family members. Autoimmun Rev. 2020;19(10):102646. doi:10.1016/j.autrev.2020.102646; Koneczny I, Tzartos J, Mané-Damas M, Yilmaz V, Huijbers MG, Lazaridis K, et al. IgG4 Autoantibodies in organ-specific autoimmunopathies: Reviewing class switching, antibody-producing cells, and specific immunotherapies. Front Immunol. 2022;13:834342. doi:10.3389/fimmu.2022.834342; McDonnell T, Wincup C, Buchholz I, Pericleous C, Giles I, Ripoll V, et al. The role of beta-2-glycoprotein I in health and disease associating structure with function: More than just APS. Blood Rev. 2020;39:100610. doi:10.1016/j.blre.2019.100610; Knight JS, Kanthi Y. Mechanisms of immunothrombosis and vasculopathy in antiphospholipid syndrome. Semin Immunopathol. 2022;44(3):347-362. doi:10.1007/s00281-022-00916-w; Насонов ЕЛ, Попкова ТВ, Панафидина ТА. Проблемы ранней системной красной волчанки в период пандемии COVID-19. Научно-практическая ревматология. 2021;59(2):119-128. doi:10.47360/1995-4484-2021-119-128; Lambers WM, Westra J, Bootsma H, de Leeuw K. From incomplete to complete systemic lupus erythematosus; A review of the predictive serological immune markers. Semin Arthritis Rheum. 2021;51(1):43-48. doi:10.1016/j.semarthrit.2020.11.006; Гордеев АВ, Галушко ЕА, Насонов ЕЛ. Концепция мультиморбидности в ревматологической практике. Научно-практическая ревматология. 2014;52(4):362-365. doi:10.14412/1995-4484-2014-362-365; Taylor PC, Atzeni F, Balsa A, Gossec L, Müller-Ladner U, Pope J. The key comorbidities in patients with rheumatoid arthritis: A narrative review. J Clin Med. 2021;10(3):509. doi:10.3390/jcm10030509; Figus FA, Piga M, Azzolin I, McConnell R, Iagnocco A. Rheumatoid arthritis: Extra-articular manifestations and comorbidities. Autoimmun Rev. 2021;20(4):102776. doi:10.1016/j.autrev.2021.102776; Fulop T, Witkowski JM, Olivieri F, Larbi A. The integration of inflammaging in age-related diseases. Semin Immunol. 2018;40:17-35. doi:10.1016/j.smim.2018.09.003; Alsaleh G, Richter FC, Simon AK. Age-related mechanisms in the context of rheumatic disease. Nat Rev Rheumatol. 2022;18(12):694-710. doi:10.1038/s41584-022-00863-8; Santos-Moreno P, Burgos-Angulo G, Martinez-Ceballos MA, Pizano A, Echeverri D, Bautista-Niño PK, et al. Inflammaging as a link between autoimmunity and cardiovascular disease: The case of rheumatoid arthritis. RMD Open. 2021;7(1):e001470. doi:10.1136/rmdopen-2020-001470; Weber BN, Giles JT, Liao KP. Shared inflammatory pathways of rheumatoid arthritis and atherosclerotic cardiovascular disease. Nat Rev Rheumatol. 2023 May 25. doi:10.1038/s41584-023-00969-7; Appleton BD, Major AS. The latest in systemic lupus erythematosus-accelerated atherosclerosis: Related mechanisms inform assessment and therapy. Curr Opin Rheumatol. 2021;33(2):211-218. doi:10.1097/BOR.0000000000000773; Roy P, Orecchioni M, Ley K. How the immune system shapes atherosclerosis: Roles of innate and adaptive immunity. Nat Rev Immunol. 2022;22(4):251-265. doi:10.1038/s41577-021-00584-1; Engelen SE, Robinson AJB, Zurke YX, Monaco C. Therapeutic strategies targeting inflammation and immunity in atherosclerosis: How to proceed? Nat Rev Cardiol. 2022;19(8):522-542. doi:10.1038/s41569-021-00668-4; Conrad N, Verbeke G, Molenberghs G, Goetschalckx L, Callender T, Cambridge G, et al. Autoimmune diseases and cardiovascular risk: a population-based study on 19 autoimmune diseases and 12 cardiovascular diseases in 22 million individuals in the UK. Lancet. 2022;400(10354):733-743. doi:10.1016/S0140-6736(22)01349-6; Lopalco G, Rigante D, Cantarini L, Imazio M, Lopalco A, Emmi G, et al. The autoinflammatory side of recurrent pericarditis: Enlightening the pathogenesis for a more rational treatment. Trends Cardiovasc Med. 2021;31(5):265-274. doi:10.1016/j.tcm.2020.04.006; Насонов ЕЛ, Сукмарова ЗН, Попкова ТВ, Белов БС. Проблемы иммунопатологии и перспективы фармакотерапии идиопатического рецидивирующего перикардита: применение ингибитора интерлейкина 1 (Анакинра). Научно-практическая ревматология. 2023;61(1):47-61. doi:10.47360/1995-4484-2023-47-61; Ананьева ЛП. Интерстициальное поражение легких, ассоциированное с системной склеродермией (прогрессирующим системным склерозом). Научно-практическая ревматология. 2017;55(1):87-95. doi:10.14412/1995-4484-2017-87-95; Насонов ЕЛ, Ананьева ЛП, Авдеев СН. Интерстициальные заболевания легких при ревматоидном артрите: мультидисциплинарная проблема ревматологии и пульмонологии. Научно-практическая ревматология. 2022;60(6):517534. doi:10.47360/1995-4484-2022-1; Fardellone P, Salawati E, Le Monnier L, Goëb V. Bone loss, osteoporosis, and fractures in patients with rheumatoid arthritis: A review. J Clin Med. 2020;9(10):3361. doi:10.3390/jcm9103361; An HJ, Tizaoui K, Terrazzino S, Cargnin S, Lee KH, et al. Sarcopenia in Autoimmune and Rheumatic Diseases: A Comprehensive Review. Int J Mol Sci. 2020;21(16):5678. doi:10.3390/ijms21165678.; Лисицына ТА, Вельтищев ДЮ, Лила АМ, Насонов ЕЛ. Интерлейкин 6 как патогенетический фактор, опосредующий формирование клинических проявлений, и мишень для терапии ревматических заболеваний и депрессивных расстройств. Научно-практическая ревматология. 2019;57(3):318-327. doi:10.14412/1995-4484-2019-318-327; Altmann DM. Neuroimmunology and neuroinflammation in autoimmune, neurodegenerative and psychiatric disease. Immunology. 2018;154(2):167-168. doi:10.1111/imm.12943; Marrie RA, Bernstein CN. Psychiatric comorbidity in immunemediated inflammatory diseases. World Psychiatry. 2021;20(2): 298-299. doi:10.1002/wps.20873; Насонов ЕЛ. Коронавирусная болезнь 2019 (COVID-19): размышления ревматолога. Научно-практическая ревматология. 2020;58(2):123-132. doi:10.14412/1995-4484-2020-123-132; Zhang Q, Bastard P; COVID Human Genetic Effort; Cobat A, Casanova JL. Human genetic and immunological determinants of critical COVID-19 pneumonia. Nature. 2022;603(7902):587-598. doi:10.1038/s41586-022-04447-0; Liu Y, Sawalha AH, Lu Q. COVID-19 and autoimmune diseases. Curr Opin Rheumatol. 2021;33(2):155-162. doi:10.1097/BOR.0000000000000776; Knight JS, Caricchio R, Casanova JL, Combes AJ, Diamond B, Fox SE, et al. The intersection of COVID-19 and autoimmunity. J Clin Invest. 2021;131(24):e154886. doi:10.1172/JCI154886; Dotan A, Muller S, Kanduc D, David P, Halpert G, Shoenfeld Y. The SARS-CoV-2 as an instrumental trigger of autoimmunity. Autoimmun Rev. 2021;20(4):102792. doi:10.1016/j.autrev.2021.102792; Sher EK, Ćosović A, Džidić-Krivić A, Farhat EK, Pinjić E, Sher F. COVID-19 a triggering factor of autoimmune and multiinflammatory diseases. Life Sci. 2023;319:121531. doi:10.1016/j.lfs.2023.121531; Merad M, Blish CA, Sallusto F, Iwasaki A. The immunology and immunopathology of COVID-19. Science. 2022;375(6585): 1122-1127. doi:10.1126/science.abm8108; Altmann DM, Whettlock EM, Liu S, Arachchillage DJ, Boyton RJ. The immunology of long COVID. Nat Rev Immunol. 2023 Jul 11. doi:10.1038/s41577-023-00904-7; Насонов ЕЛ. Иммунопатология и иммунофармакотерапия коронавирусной болезни 2019 (COVID-19): фокус на интерлейкин 6. Научно-практическая ревматология. 2020;58(3): 245-261. doi:10.14412/1995-4484-2020-245-261; Каледа МИ, Никишина ИП, Федоров ЕС, Насонов ЕЛ. Коронавирусная болезнь 2019 (COVID-19) у детей: уроки педиатрической ревматологии. Научно-практическая ревматология. 2020;58(5):469-479doi: 10.47360/1995-4484-2020-469-479; Насонов ЕЛ, Бекетова ТВ, Решетняк ТМ, Лила АМ, Ананьева ЛП, Лисицина ТА, и др. Коронавирусная болезнь 2019 (COVID-19) и иммуновоспалительные ревматические заболевания: на перекрестке проблем тромбовоспаления и аутоиммунитета. Научно-практическая ревматология. 2020;58(4):353-367. doi:10.47360/1995-4484-2020-353-367; Wagner DD, Heger LA. Thromboinflammation: From atherosclerosis to COVID-19. Arterioscler Thromb Vasc Biol. 2022;42(9):1103-1112. doi:10.1161/ATVBAHA.122.317162; Nasonov EL, Samsonov MY, Lila AM. Coronavirus infection 2019 (COVID-19) and autoimmunity. Her Russ Acad Sci. 2022;92(4):398-403. doi:10.1134/S1019331622040062; Grainger R, Kim AHJ, Conway R, Yazdany J, Robinson PC. COVID-19 in people with rheumatic diseases: Risks, outcomes, treatment considerations. Nat Rev Rheumatol. 2022;18(4):191-204. doi:10.1038/s41584-022-00755-x; Zacharias H, Dubey S, Koduri G, D’Cruz D. Rheumatological complications of COVID-19. Autoimmun Rev. 2021;20(9):102883. doi:10.1016/j.autrev.2021.102883; Metyas S, Chen C, Aung T, Ballester A, Cheav S. Rheumatologic manifestations of post SARS-CoV-2 infection: A case series. Curr Rheumatol Rev. 2022;18(4):346-351. doi:10.2174/1573397118666220211155716; Tang KT, Hsu BC, Chen DY. Autoimmune and rheumatic manifestations associated with COVID-19 in adults: An updated systematic review. Front Immunol. 2021;12:645013. doi:10.3389/fimmu.2021.645013; Chang R, Yen-Ting Chen T, Wang SI, Hung YM, Chen HY, Wei CJ. Risk of autoimmune diseases in patients with COVID-19: A retrospective cohort study. EClinicalMedicine. 2023;56:101783. doi:10.1016/j.eclinm.2022.101783; Tesch F, Ehm F, Vivirito A, Wende D, Batram M, Loser F, et al. Incident autoimmune diseases in association with SARS-CoV-2 infection: A matched cohort study. Clin Rheumatol. 2023 Jun 19. doi:10.1007/s10067-023-06670-0; Syed U, Subramanian A, Wraith DC, Lord JM, McGee K, Ghokale K, et al. The incidence of immune mediated inflammatory diseases following COVID-19: A matched cohort study in UK primary care. medRxiv 2022;10.06.22280775. doi:10.1101/2022.10.06.22280775; Woodruff MC, Ramonell RP, Nguyen DC, Cashman KS, Saini AS, Haddad NS, et al. Extrafollicular B cell responses correlate with neutralizing antibodies and morbidity in COVID-19. Nat Immunol. 2020;21(12):1506-1516. doi:10.1038/s41590-020-00814-z; Bastard P, Rosen LB, Zhang Q, Michailidis E, Hoffmann HH, Zhang Y, et al.; NIAID-USUHS Immune Response to COVID Group; COVID Clinicians; Imagine COVID Group; French COVID Cohort Study Group; Milieu Intérieur Consortium; CoV-Contact Cohort; Amsterdam UMC Covid-19 Biobank; COVID Human Genetic Effort. Autoantibodies against type I IFNs in patients with life-threatening COVID-19. Science. 2020;370(6515):eabd4585. doi:10.1126/science.abd4585; Wang X, Tang Q, Li H, Jiang H, Xu J, Bergquist R, Qin Z. Autoantibodies against type I interferons in COVID-19 infection: A systematic review and meta-analysis. Int J Infect Dis. 2023;130: 147-152. doi:10.1016/j.ijid.2023.03.011; Bastard P, Zhang Q, Zhang SY, Jouanguy E, Casanova JL. Type I interferons and SARS-CoV-2: From cells to organisms. Curr Opin Immunol. 2022;74:172-182. doi:10.1016/j.coi.2022.01.003; Gupta S, Nakabo S, Chu J, Hasni S, Kaplan MJ. Association between anti-interferon-alpha autoantibodies and COVID-19 in systemic lupus erythematosus. medRxiv. 2020;2020.10.29.20222000. doi:10.1101/2020.10.29.20222000; Beydon M, Nicaise-Roland P, Mageau A, Farkh C, Daugas E, Descamps V, et al. Autoantibodies against IFNα in patients with systemic lupus erythematosus and susceptibility for infection: A retrospective case-control study. Sci Rep. 2022;12(1):11244. doi:10.1038/s41598-022-15508-9; Moritz CP, Paul S, Stoevesandt O, Tholance Y, Camdessanché JP, Antoine JC. Autoantigenomics: Holistic characterization of autoantigen repertoires for a better understanding of autoimmune diseases. Autoimmun Rev. 2020;19(2):102450. doi:10.1016/j.autrev.2019.102450; Gao ZW, Zhang HZ, Liu C, Dong K. Autoantibodies in COVID-19: Frequency and function. Autoimmun Rev. 2021;20(3):102754. doi:10.1016/j.autrev.2021.102754; Damoiseaux J, Dotan A, Fritzler MJ, Bogdanos DP, Meroni PL, Roggenbuck D, et al. Autoantibodies and SARS-CoV2 infection: The spectrum from association to clinical implication: Report of the 15th Dresden Symposium on Autoantibodies. Autoimmun Rev. 2022;21(3):103012. doi:10.1016/j.autrev.2021.103012; Насонов ЕЛ. Коронавирусная болезнь 2019 (COVID-19) и аутоиммунитет. Научно-практическая ревматология. 2021;59(1):5-30. doi:10.47360/1995-4484-2021-5-30; Wang EY, Mao T, Klein J, Dai Y, Huck JD, Jaycox JR, et al. Diverse functional autoantibodies in patients with COVID-19. Nature. 2021;595(7866):283-288. doi:10.1038/s41586-021-03631-y; Chang SE, Feng A, Meng W, Apostolidis SA, Mack E, Artandi M, et al. New-onset IgG autoantibodies in hospitalized patients with COVID-19. Nat Commun. 2021;12(1):5417. doi:10.1038/s41467-021-25509-3; Wong AKH, Woodhouse I, Schneider F, Kulpa DA, Silvestri G, Maier CL. Broad auto-reactive IgM responses are common in critically ill patients, including those with COVID-19. Cell Rep Med. 2021;2(6):100321. doi:10.1016/j.xcrm.2021.100321; Juanes-Velasco P, Landeira-Viñuela A, García-Vaquero ML, Lecrevisse Q, Herrero R, Ferruelo A, et al. SARS-CoV-2 infection triggers auto-immune response in ARDS. Front Immunol. 2022;13:732197. doi:10.3389/fimmu.2022.732197; Consiglio CR, Cotugno N, Sardh F, Pou C, Amodio D, Rodriguez L, et al.; CACTUS Study Team. The immunology of multisystem inflammatory syndrome in children with COVID-19. Cell. 2020;183(4):968-981.e7. doi:10.1016/j.cell.2020.09.016; Gruber CN, Patel RS, Trachtman R, Lepow L, Amanat F, Krammer F, et al. Mapping systemic inflammation and antibody responses in multisystem inflammatory syndrome in children (MIS-C). Cell. 2020;183(4):982-995.e14. doi:10.1016/j.cell.2020.09.034; Pfeifer J, Thurner B, Kessel C, Fadle N, Kheiroddin P, Regitz E, et al. Autoantibodies against interleukin-1 receptor antagonist in multisystem inflammatory syndrome in children: A multicentre, retrospective, cohort study. Lancet Rheumatol. 2022;4(5):e329-e337. doi:10.1016/S2665-9913(22)00064-9; Baiocchi GC, Vojdani A, Rosenberg AZ, Vojdani E, Halpert G, Ostrinski Y, et al. Cross-sectional analysis reveals autoantibody signatures associated with COVID-19 severity. J Med Virol. 2023;95(2):e28538. doi:10.1002/jmv.28538; Visvabharathy L, Zhu C, Orban ZS, Yarnoff K, Palacio N, Jimenez M, et al. Autoantibody production is enhanced after mild SARSCoV-2 infection despite vaccination in individuals with and without long COVID. medRxiv. 2023;2023.04.07.23288243. doi:10.1101/2023.04.07.23288243; Taeschler P, Cervia C, Zurbuchen Y, Hasler S, Pou C, Tan Z, et al. Autoantibodies in COVID-19 correlate with antiviral humoral responses and distinct immune signatures. Allergy. 2022;77(8):2415-2430. doi:10.1111/all.15302; Son K, Jamil R, Chowdhury A, Mukherjee M, Venegas C, Miyasaki K, et al. Circulating anti-nuclear autoantibodies in COVID-19 survivors predict long COVID symptoms. Eur Respir J. 2023;61(1): 2200970. doi:10.1183/13993003.00970-2022; Woodruff MC, Ramonell RP, Haddad NS, Anam FA, Rudolph ME, Walker TA, et al. Dysregulated naive B cells and de novo autoreactivity in severe COVID-19. Nature. 2022;611(7934):139-147. doi:10.1038/s41586-022-05273-0; Rojas M, Rodríguez Y, Acosta-Ampudia Y, Monsalve DM, Zhu C, Li QZ, et al. Autoimmunity is a hallmark of post-COVID syndrome. J Transl Med. 2022;20(1):129. doi:10.1186/s12967-022-03328-4; Bhadelia N, Olson A, Smith E, Riefler K, Cabrejas J, Ayuso MJ, et al. Longitudinal analysis reveals elevation then sustained higher expression of autoantibodies for six months after SARS-CoV-2 infection. medRxiv. 2022;2022.05.04.22274681. doi:10.1101/2022.05.04.22274681; Liu Y, Ebinger JE, Mostafa R, Budde P, Gajewski J, Walker B, et al. Paradoxical sex-specific patterns of autoantibody response to SARS-CoV-2 infection. J Transl Med. 2021;19(1):524. doi:10.1186/s12967-021-03184-8; Lichtenstein B, Zheng Y, Gjertson D, Ferbas KG, Rimoin AW, Yang OO, et al. Vascular and non-HLA autoantibody profiles in hospitalized patients with COVID-19. Front Immunol. 2023:1197326 doi:10.3389/fimmu.2023.1197326.; Park SH, Suh JW, Yang KS, Kim JY, Kim SB, Sohn JW, et al. Clinical significance of antinuclear antibody positivity in patients with severe coronavirus disease 2019. Korean J Intern Med. 2023;38(3):417-426. doi:10.3904/kjim.2022.352; Feng A, Yang EY, Moore AR, Dhingra S, Chang SE, Yin X, et al. Autoantibodies are highly prevalent in non-SARS-CoV-2 respiratory infections and critical illness. JCI Insight. 2023;8(3):e163150. doi:10.1172/jci.insight.163150; Seeßle J, Waterboer T, Hippchen T, Simon J, Kirchner M, Lim A, et al. Persistent symptoms in adult patients 1 year after coronavirus disease 2019 (COVID-19): A prospective cohort study. Clin Infect Dis. 2022;74(7):1191-1198. doi:10.1093/cid/ciab611; Umbrello M, Nespoli S, Pisano E, Bonino C, Muttini S. Autoantibodies in severe COVID-19-related acute respiratory distress syndrome: Just innocent bystanders? Int J Rheum Dis. 2021;24(3):462-464. doi:10.1111/1756-185X.14077; Moody R, Sonda S, Johnston FH, Smith KJ, Stephens N, McPherson M, et al. Antibodies against Spike protein correlate with broad autoantigen recognition 8 months post SARS-CoV-2 exposure, and anti-calprotectin autoantibodies associated with better clinical outcomes. Front Immunol. 2022;13:945021. doi:10.3389/fimmu.2022.945021; Muri J, Cecchinato V, Cavalli A, Shanbhag AA, Matkovic M, Biggiogero M, et al. Autoantibodies against chemokines postSARS-CoV-2 infection correlate with disease course. Nat Immunol. 2023;24(4):604-611. doi:10.1038/s41590-023-01445-w; Wang EY, Dai Y, Rosen CE, Schmitt MM, Dong MX, Ferré EMN, et al. High-throughput identification of autoantibodies that target the human exoproteome. Cell Rep Methods. 2022;2(2):100172. doi:10.1016/j.crmeth.2022.100172; Насонов ЕЛ (ред.). Антифосфолипидный синдром. М.:Литтерра;2004.; Garcia D, Erkan D. Diagnosis and management of the antiphospholipid syndrome. N Engl J Med. 2018;378(21):2010-2021. doi:10.1056/NEJMra1705454; Pignatelli P, Ettorre E, Menichelli D, Pani A, Violi F, Pastori D. Seronegative antiphospholipid syndrome: Refining the value of “non-criteria” antibodies for diagnosis and clinical management. Haematologica. 2020;105(3):562-572. doi:10.3324/haematol.2019.221945; Litvinova E, Darnige L, Kirilovsky A, Burnel Y, de Luna G, Dragon-Durey MA. Prevalence and significance of non-conventional antiphospholipid antibodies in patients with clinical APS criteria. Front Immunol. 2018;9:2971. doi:10.3389/fimmu.2018.02971; Shi H, Zuo Y, Navaz S, Harbaugh A, Hoy CK, Ghandi AA. et al. Endothelial cell-activating antibodies in COVID-19. Arthritis Rheumatol. 2022;74(7):1132-1138. doi:10.1002/art.42094; Zuo Y, Estes SK, Ali RA, Gandhi AA, Yalavarthi S, Shi H, et al. Prothrombotic autoantibodies in serum from patients hospitalized with COVID-19. Sci Transl Med. 2020;12(570):eabd3876. doi:10.1126/scitranslmed.abd3876; Taha M, Samavati L. Antiphospholipid antibodies in COVID-19: A meta-analysis and systematic review. RMD Open. 2021;7(2): e001580. doi:10.1136/rmdopen-2021-001580; Butt A, Erkan D, Lee AI. COVID-19 and antiphospholipid antibodies. Best Pract Res Clin Haematol. 2022;35(3):101402. doi:10.1016/j.beha.2022.101402; Meroni PL, Borghi MO. Antiphospholipid antibodies and COVID-19 thrombotic vasculopathy: One swallow does not make a summer. Ann Rheum Dis. 2021;80(9):1105-1107. doi:10.1136/annrheumdis-2021-220520; Favaloro EJ, Henry BM, Lippi G. COVID-19 and antiphospholipid antibodies: Time for a reality check? Semin Thromb Hemost. 2022;48(1):72-92. doi:10.1055/s-0041-1728832; Mendel A, Fritzler MJ, St-Pierre Y, Rauch J, Bernatsky S, Vinet É. Outcomes associated with antiphospholipid antibodies in COVID-19: A prospective cohort study. Res Pract Thromb Haemost. 2023;7(1):100041. doi:10.1016/j.rpth.2023.100041; Hollerbach A, Müller-Calleja N, Pedrosa D, Canisius A, Sprinzl MF, et al. Pathogenic lipid-binding antiphospholipid antibodies are associated with severity of COVID-19. J Thromb Haemost. 2021;19(9):2335-2347. doi:10.1111/jth.15455; Zuniga M, Gomes C, Carsons SE, Bender MT, Cotzia P, Miao QR, et al. Autoimmunity to annexin A2 predicts mortality among hospitalised COVID-19 patients. Eur Respir J. 2021;58(4): 2100918. doi:10.1183/13993003.00918-2021; Benjamin LA, Paterson RW, Moll R, Pericleous C, Brown R, Mehta PR, et al.; UCLH Queen Square COVID-19 Biomarker Study group. Antiphospholipid antibodies and neurological manifestations in acute COVID-19: A single-centre cross-sectional study. EClinicalMedicine. 2021;39:101070. doi:10.1016/j.eclinm.2021.101070; Zuo Y, Yalavarthi S, Navaz SA, Hoy CK, Harbaugh A, Gockman K, et al. Autoantibodies stabilize neutrophil extracellular traps in COVID-19. JCI Insight. 2021;6(15):e150111. doi:10.1172/jci.insight.150111; Zuo Y, Navaz S, Tsodikov A, Kmetova K, Kluge L, Ambati A, et al.; Antiphospholipid Syndrome Alliance for Clinical Trials and International Networking. Anti-neutrophil extracellular trap antibodies in antiphospholipid antibody-positive patients: Results from the antiphospholipid syndrome alliance for clinical trials and international networking clinical database and repository. Arthritis Rheumatol. 2023 Mar 2. doi:10.1002/art.42489; Zuo Y, Yalavarthi S, Gockman K, Madison JA, Gudjonsson JE, Kahlenberg JM, et al. Anti-neutrophil extracellular trap anti-bodies and impaired neutrophil extracellular trap degradation in antiphospholipid syndrome. Arthritis Rheumatol. 2020;72(12):2130-2135. doi:10.1002/art.41460; de Bont CM, Stokman MEM, Faas P, Thurlings RM, Boelens WC, Wright HL, et al. Autoantibodies to neutrophil extracellular traps represent a potential serological biomarker in rheumatoid arthritis. J Autoimmun. 2020;113:102484. doi:10.1016/j.jaut.2020.102484; Yalavarthi S, Gould TJ, Rao AN, Mazza LF, Morris AE, NúñezÁlvarez C, et al. Release of neutrophil extracellular traps by neutrophils stimulated with antiphospholipid antibodies: a newly identified mechanism of thrombosis in the antiphospholipid syndrome. Arthritis Rheumatol. 2015;67(11):2990-3003. doi:10.1002/art.39247; Pisareva E, Badiou S, Mihalovičová L, Mirandola A, Pastor B, Kudriavtsev A, et al. Persistence of neutrophil extracellular traps and anticardiolipin auto-antibodies in post-acute phase COVID-19 patients. J Med Virol. 2023;95(1):e28209. doi:10.1002/jmv.28209; Bertin D, Brodovitch A, Lopez A, Arcani R, Thomas GM, Bezanie A, et al. Anti-cardiolipin IgG autoantibodies associate with circulating extracellular DNA in severe COVID-19. Sci Rep. 2022;12(1):12523. doi:10.1038/s41598-022-15969-y; Gomes C, Zuniga M, Crotty KA, Qian K, Lin LH, Argyropoulos KV, et al. Autoimmune anti-DNA antibodies predict disease severity in COVID-19 patients. medRxiv. 2021;2021.01.04.20249054. doi:10.1101/2021.01.04.20249054; Cheng AP, Cheng MP, Gu W, Sesing Lenz J, Hsu E, Schurr E, et al. Cell-free DNA tissues of origin by methylation profiling reveals significant cell, tissue, and organ-specific injury related to COVID-19 severity. Med. 2021;2(4):411-422.e5. doi:10.1016/j.medj.2021.01.001; Giannini M, Ohana M, Nespola B, Zanframundo G, Geny B, Meyer A. Similarities between COVID-19 and anti-MDA5 syndrome: What can we learn for better care? Eur Respir J. 2020;56(3): 2001618. doi:10.1183/13993003.01618-2020; Dias Junior AG, Sampaio NG, Rehwinkel J. A balancing act: MDA5 in antiviral immunity and autoinflammation. Trends Microbiol. 2019;27(1):75-85. doi:10.1016/j.tim.2018.08.007; Wang G, Wang Q, Wang Y, Liu C, Wang L, Chen H, et al. Presence of anti-MDA5 antibody and its value for the clinical assessment in patients with COVID-19: A retrospective cohort study. Front Immunol. 2021;12:791348. doi:10.3389/fimmu.2021.791348; Rodriguez-Perez AI, Labandeira CM, Pedrosa MA, Valenzuela R, Suarez-Quintanilla JA, Cortes-Ayaso M, et al. Autoantibodies against ACE2 and angiotensin type-1 receptors increase severity of COVID-19. J Autoimmun. 2021;122:102683. doi:10.1016/j.jaut.2021.102683; Casciola-Rosen L, Thiemann DR, Andrade F, Trejo-Zambrano MI, Leonard EK, Spangler JB, et al. IgM anti-ACE2 autoantibodies in severe COVID-19 activate complement and perturb vascular endothelial function. JCI Insight. 2022;7(9):e158362. doi:10.1172/jci.insight.158362; Miedema J, Schreurs M, van der Sar-van der Brugge S, Paats M, Bakker M, et al. Antibodies against angiotensin II receptor type 1 and endothelin A receptor are associated with an unfavorable COVID19 disease course. Front Immunol. 2021;12:684142. doi:10.3389/fimmu.2021.684142; Briquez PS, Rouhani SJ, Yu J, Pyzer AR, Trujillo J, Dugan HL, et al. Severe COVID-19 induces autoantibodies against angiotensin II that correlate with blood pressure dysregulation and disease severity. Sci Adv. 2022;8(40):eabn3777. doi:10.1126/sciadv.abn3777; Murphy WJ, Longo DL. A possible role for anti-idiotype antibodies in SARS-CoV-2 infection and vaccination. N Engl J Med. 2022;386(4):394-396. doi:10.1056/NEJMcibr2113694; Cabral-Marques O, Halpert G, Schimke LF, Ostrinski Y, Vojdani A, Baiocchi GC, et al. Autoantibodies targeting GPCRs and RAS-related molecules associate with COVID-19 severity. Nat Commun. 2022;13(1):1220. doi:10.1038/s41467-022-28905-5; Cabral-Marques O, Riemekasten G. Functional autoantibodies targeting G protein-coupled receptors in rheumatic diseases. Nat Rev Rheumatol. 2017;13(11):648-656. doi:10.1038/nrrheum.2017.134; Fugger L, Jensen LT, Rossjohn J. Challenges, progress, and prospects of developing therapies to treat autoimmune diseases. Cell. 2020;181(1):63-80. doi:10.1016/j.cell.2020.03.007; Marinho A, Delgado Alves J, Fortuna J, Faria R, Almeida I, Alves G, et al. Biological therapy in systemic lupus erythematosus, antiphospholipid syndrome, and Sjögren’s syndrome: Evidence- and practice-based guidance. Front Immunol. 2023;14: 1117699. doi:10.3389/fimmu.2023.1117699; Moingeon P. Artificial intelligence-driven drug development against autoimmune diseases. Trends Pharmacol Sci. 2023;44(7):411-424. doi:10.1016/j.tips.2023.04.005; Baker KF, Isaacs JD. Novel therapies for immune-mediated inflammatory diseases: What can we learn from their use in rheumatoid arthritis, spondyloarthritis, systemic lupus erythematosus, psoriasis, Crohn’s disease and ulcerative colitis? Ann Rheum Dis. 2018;77(2):175-187. doi:10.1136/annrheumdis-2017-211555; Насонов ЕЛ. Фармакотерапия ревматоидного артрита: новая стратегия, новые мишени. Научно-практическая ревматология. 2017;55(4):409-419. doi:10.14412/1995-4484-2017-409-419; Насонов ЕЛ, Лила АМ. Ингибиция интерлейкина 6 при иммуновоспалительных ревматических заболеваниях: достижения, перспективы и надежды. Научно-практическая ревматология. 2017;55(6):590-599. doi:10.14412/1995-4484-2017-590-599; Насонов ЕЛ, Авдеева АС, Попкова ТВ. Новые возможности фармакотерапии системной красной волчанки: перспективы применения анифролумаба (моноклональные антитела к рецепторам интерферона типа I). Научно-практическая ревматология. 2021;59(5):537-546. doi:10.47360/1995-4484-2021-537-546; Lee DSW, Rojas OL, Gommerman JL. B cell depletion therapies in autoimmune disease: Advances and mechanistic insights. Nat Rev Drug Discov. 2021;20(3):179-199. doi:10.1038/s41573-020-00092-2; Насонов ЕЛ, Бекетова ТВ, Ананьева ЛП, Васильев ВИ, Соловьев СК, Авдеева АС. Перспективы анти-В-клеточной терапии при иммуновоспалительных ревматических заболеваниях. Научно-практическая ревматология. 2019;57:140. doi:10.14412/1995-4484-2019-3-40; Насонов ЕЛ. Абатацепт при ревматоидном артрите: новая форма, новые механизмы, новые возможности. Научно-практическая ревматология. 2015;53(5):522-541. doi:10.14412/1995-4484-2015-522-541; Насонов ЕЛ, Лила АМ. Ингибиторы Янус-киназ при иммуновоспалительных ревматических заболеваниях: новые возможности и перспективы. Научно-практическая ревматология. 2019;57(1):8-16. doi:10.14412/1995-4484-2019-8-16; Philips RL, Wang Y, Cheon H, Kanno Y, Gadina M, Sartorelli V, et al. The JAK-STAT pathway at 30: Much learned, much more to do. Cell. 2022;185(21):3857-3876. doi:10.1016/j.cell.2022.09.023; Smolen JS, Aletaha D, Bijlsma JW, Breedveld FC, Boumpas D, Burmester G, et al.; T2T Expert Committee. Treating rheumatoid arthritis to target: Recommendations of an international task force. Ann Rheum Dis. 2010;69(4):631-637. doi:10.1136/ard.2009.123919; van Vollenhoven RF, Mosca M, Bertsias G, Isenberg D, Kuhn A, Lerstrøm K, et al. Treat-to-target in systemic lupus erythematosus: Recommendations from an international task force. Ann Rheum Dis. 2014;73(6):958-967. doi:10.1136/annrheumdis-2013-205139; Hahn J, Cook NR, Alexander EK, Friedman S, Walter J, Bubes V, et al. Vitamin D and marine omega 3 fatty acid supplementation and incident autoimmune disease: VITAL randomized controlled trial. BMJ. 2022;376:e066452. doi:10.1136/bmj-2021-066452; Levy RA, Gonzalez-Rivera T, Khamashta M, Fox NL, JonesLeone A, Rubin B, et al. 10 years of belimumab experience: What have we learnt? Lupus. 2021;30(11):1705-1721. doi:10.1177/09612033211028653; Merino-Vico A, Frazzei G, van Hamburg JP, Tas SW. Targeting B cells and plasma cells in autoimmune diseases: From established treatments to novel therapeutic approaches. Eur J Immunol. 2023;53(1):e2149675. doi:10.1002/eji.202149675; Furie RA, Aroca G, Cascino MD, Garg JP, Rovin BH, Alvarez A, et al. B-cell depletion with obinutuzumab for the treatment of proliferative lupus nephritis: A randomised, double-blind, placebo-controlled trial. Ann Rheum Dis. 2022;81(1):100-107. doi:10.1136/annrheumdis-2021-220920; Насонов ЕЛ, Авдеева АС. Деплеция В-клеток при иммуновоспалительных ревматических заболеваниях и коронавирусная болезнь 2019 (COVID-19). Научно-практическая ревматология. 2021;59(4):384-393. doi:10.47360/1995-4484-2021-384-393; Hiepe F, Dörner T, Hauser AE, Hoyer BF, Mei H, Radbruch A. Long-lived autoreactive plasma cells drive persistent autoimmune inflammation. Nat Rev Rheumatol. 2011;7(3):170-178. doi:10.1038/nrrheum.2011.1; Ostendorf L, Burns M, Durek P, Heinz GA, Heinrich F, Garantziotis P, et al. Targeting CD38 with daratumumab in refractory systemic lupus erythematosus. N Engl J Med. 2020;383(12):1149-1155. doi:10.1056/NEJMoa2023325; Pleguezuelo DE, Díaz-Simón R, Cabrera-Marante O, Lalueza A, Paz-Artal E, Lumbreras C, et al. Case report: Resetting the humoral immune response by targeting plasma cells with daratumumab in anti-phospholipid syndrome. Front Immunol. 2021;12:667515. doi:10.3389/fimmu.2021.667515; Orvain C, Boulch M, Bousso P, Allanore Y, Avouac J. Is there a place for chimeric antigen receptor-T cells in the treatment of chronic autoimmune rheumatic diseases? Arthritis Rheumatol. 2021;73(11):1954-1965. doi:10.1002/art.41812; Zhang Z, Xu Q, Huang L. B cell depletion therapies in autoimmune diseases: Monoclonal antibodies or chimeric antigen receptor-based therapy? Front Immunol. 2023;14:1126421. doi:10.3389/fimmu.2023.1126421; Jin X, Xu Q, Pu C, Zhu K, Lu C, Jiang Y, et al. Therapeutic efficacy of anti-CD19 CAR-T cells in a mouse model of systemic lupus erythematosus. Cell Mol Immunol. 2021;18(8):1896-1903. doi:10.1038/s41423-020-0472-1; Mougiakakos D, Krönke G, Völkl S, Kretschmann S, Aigner M, Kharboutli S, et al. CD19-targeted CAR T cells in refractory systemic lupus erythematosus. N Engl J Med. 2021;385(6):567-569. doi:10.1056/NEJMc2107725; Mackensen A, Müller F, Mougiakakos D, Böltz S, Wilhelm A, Aigner M, et al. Anti-CD19 CAR T cell therapy for refractory systemic lupus erythematosus. Nat Med. 2022;28(10):2124-2132. doi:10.1038/s41591-022-02017-5; Pecher AC, Hensen L, Klein R, Schairer R, Lutz K, Atar D, et al. CD19-targeting CAR T cells for myositis and interstitial lung disease associated with antisynthetase syndrome. JAMA. 2023;329(24):2154-2162. doi:10.1001/jama.2023.8753; Goulden B, Isenberg D. Anti-IFNαR MAbs for the treatment of systemic lupus erythematosus. Expert Opin Biol Ther. 2021;21(4):519-528. doi:10.1080/14712598.2021.1841164; Niebel D, de Vos L, Fetter T, Brägelmann C, Wenzel J. Cutaneous lupus erythematosus: An update on pathogenesis and future therapeutic directions. Am J Clin Dermatol. 2023;24(4):521-540. doi:10.1007/s40257-023-00774-8; Xue C, Yao Q, Gu X, Shi Q, Yuan X, Chu Q, Bao Z, et al. Evolving cognition of the JAK-STAT signaling pathway: autoimmune disorders and cancer. Signal Transduct Target Ther. 2023;8(1):204. doi:10.1038/s41392-023-01468-7; Tanaka Y, Luo Y, O’Shea JJ, Nakayamada S. Janus kinase-targeting therapies in rheumatology: A mechanisms-based approach. Nat Rev Rheumatol. 2022;18(3):133-145. doi:10.1038/s41584-021-00726-8; Mok CC. Targeted small molecules for systemic lupus erythematosus: Drugs in the pipeline. Drugs. 2023;83(6):479-496. doi:10.1007/s40265-023-01856-x; Moura RA, Fonseca JE. JAK inhibitors and modulation of B cell immune responses in rheumatoid arthritis. Front Med (Lausanne). 2021;7:607725. doi:10.3389/fmed.2020.607725; Hasni SA, Gupta S, Davis M, Poncio E, Temesgen-Oyelakin Y, Carlucci PM, et al. Phase 1 double-blind randomized safety trial of the Janus kinase inhibitor tofacitinib in systemic lupus erythematosus. Nat Commun. 2021;12(1):3391. doi:10.1038/s41467-021-23361-z; Nikolopoulos D, Parodis I. Janus kinase inhibitors in systemic lupus erythematosus: Implications for tyrosine kinase 2 inhibition. Front Med (Lausanne). 2023;10:1217147. doi:10.3389/fmed.2023.1217147; Crepeau RL, Ford ML. Challenges and opportunities in targeting the CD28/CTLA-4 pathway in transplantation and autoimmunity. Expert Opin Biol Ther. 2017;17(8):1001-1012. doi:10.1080/14712598.2017.1333595; Iwata S, Nakayamada S, Fukuyo S, Kubo S, Yunoue N, Wang SP, et al. Activation of Syk in peripheral blood B cells in patients with rheumatoid arthritis: A potential target for abatacept therapy. Arthritis Rheumatol. 2015;67(1):63-73. doi:10.1002/art.38895; Merrill JT, Burgos-Vargas R, Westhovens R, Chalmers A, D’Cruz D, Wallace DJ, et al. The efficacy and safety of abatacept in patients with non-life-threatening manifestations of systemic lupus erythematosus: Results of a twelve-month, multicenter, exploratory, phase IIb, randomized, double-blind, placebo-controlled trial. Arthritis Rheum. 2010;62(10):3077-3087. doi:10.1002/art.27601; Tjärnlund A, Tang Q, Wick C, Dastmalchi M, Mann H, Tomasová Studýnková J, et al. Abatacept in the treatment of adult dermatomyositis and polymyositis: A randomised, phase IIb treatment delayed-start trial. Ann Rheum Dis. 2018;77(1):55-62. doi:10.1136/annrheumdis-2017-211751; Khanna D, Spino C, Johnson S, Chung L, Whitfield ML, Denton CP, et al. Abatacept in early diffuse cutaneous systemic sclerosis: Results of a phase II investigator-initiated, multicenter, double-blind, randomized, placebo-controlled trial. Arthritis Rheumatol. 2020;72(1):125-136. doi:10.1002/art.41055; Chung L, Spino C, McLain R, Johnson SR, Denton CP, Molitor JA, et al. Safety and efficacy of abatacept in early diffuse cutaneous systemic sclerosis (ASSET): Open-label extension of a phase 2, double-blind randomised trial. Lancet Rheumatol. 2020;2(12):e743-e753. doi:10.1016/s2665-9913(20)30237-x; Langford CA, Monach PA, Specks U, Seo P, Cuthbertson D, McAlear CA, et al.; Vasculitis Clinical Research Consortium. An open-label trial of abatacept (CTLA4-IG) in non-severe relapsing granulomatosis with polyangiitis (Wegener’s). Ann Rheum Dis. 2014;73(7):1376-1379. doi:10.1136/annrheumdis-2013-204164; de Wolff L, van Nimwegen JF, Mossel E, van Zuiden GS, Stel AJ, Majoor KI, et al. Long-term abatacept treatment for 48 weeks in patients with primary Sjögren’s syndrome: The open-label extension phase of the ASAP-III trial. Semin Arthritis Rheum. 2022;53:151955. doi:10.1016/j.semarthrit.2022.151955; Насонов ЕЛ, Решетняк ТМ, Алекберова ЗС. Тромботическая микроангиопатия в ревматологии: связь тромбовоспаления и аутоиммунитета. Терапевтический архив. 2020;92(5):414. doi:10.26442/00403660.2020.05.000697; Mazzariol M, Manenti L, Vaglio A. The complement system in antineutrophil cytoplasmic antibody-associated vasculitis: pathogenic player and therapeutic target. Curr Opin Rheumatol. 2023;35(1):31-36. doi:10.1097/BOR.0000000000000914; Rafael-Vidal C, Pérez N, Altabás I, Garcia S, Pego-Reigosa JM. Blocking IL-17: A promising strategy in the treatment of systemic rheumatic diseases. Int J Mol Sci. 2020;21(19):7100. doi:10.3390/ijms21197100; Akiyama S, Sakuraba A. Distinct roles of interleukin-17 and T helper 17 cells among autoimmune diseases. J Transl Autoimmun. 2021;4:100104. doi:10.1016/j.jtauto.2021.100104.; Winthrop KL, Isaacs JD, Mease PJ, Boumpas DT, Baraliakos X, Gottenberg JE, et al. Unmet need in rheumatology: Reports from the Advances in Targeted Therapies Meeting, 2022. Ann Rheum Dis. 2023;82(5):594-598. doi:10.1136/ard-2022-223528; Насонов ЕЛ, Лила АМ, Галушко ЕА, Амирджанова ВН. Стратегия развития ревматологии: от научных достижений к практическому здравоохранению. Научно-практическая ревматология. 2017;55(4):339-343. doi:10.14412/1995-4484-2017-339-343; Laigle L, Chadli L, Moingeon P. Biomarker-driven development of new therapies for autoimmune diseases: Current status and future promises. Expert Rev Clin Immunol. 2023;19(3):305314. doi:10.1080/1744666X.2023.2172404; Felten R, Mertz P, Sebbag E, Scherlinger M, Arnaud L. Novel therapeutic strategies for autoimmune and inflammatory rheumatic diseases. Drug Discov Today. 2023;28(7):103612. doi:10.1016/j.drudis.2023.103612

  4. 4
  5. 5
    Academic Journal

    Πηγή: A breakthrough in science: development strategies; 48-62 ; Новое слово в науке: стратегии развития; 48-62

    Περιγραφή αρχείου: text/html

    Relation: info:eu-repo/semantics/altIdentifier/isbn/978-5-6047675-5-9; https://interactive-plus.ru/e-articles/804/Action804-556188.pdf; Кардиология: национальное руководство / под ред. Е.В. Шляхто. – 2-е изд., перераб. и доп. – М.: ГЭОТАР-Медиа, 2019. – 800 с.; Белялова Ф.И. Клинические рекомендации по кардиологии. – М.: ГЕОТАР-Медиа, 2015. – 160 с.; Эдейр О.В. Секреты кардиологии. – М.: МЕДпресс-информ, 2008. – 448 с.; Бокерия Л.А. Сердечно-сосудистая хирургия – 2012. Болезни и врожденные аномалии системы кровообращения / Л.А. Бокерия, Р.Г. Гудкова. – М.: НЦССХ им. А.Н. Бакулева, 2012. – 162 c.; Медико-социальная деятельность: учебник / С.Н. Пузин [и др.]; под ред. С.Н. Пузина, М.А. Рычковой. – М.: ГЭОТАР-Медиа, 2017. – 416 с.; Хасиева Р.М. Инвалидность вследствие болезней системы кровообращения в Чеченской Республике и особенности медико-социальной реабилитации: дис. . канд. мед. наук. – М., 2010. – 187 с.; Артамонова Г.В. Тенденции смертности населения трудоспособного возраста от болезней системы кровообращения в Российской Федерации и Кемеровской области / Г.В. Артамонова, С.А. Максимов, М.В. Табакаев // Здравоохранение Российской Федерации. – 2015. – Т. 59. №6. – С. 19–24.; Бокерия Л.А. Болезни системы кровообращения и сердечно-сосудистая хирургия в Российской Федерации. Состояние и проблемы / Л.А. Бокерия, Р.Г. Гудкова // Аналитический вестник / Совет Федерации Федерального Собрания Российской Федерации. Аналитическое управление Аппарата Совета Федерации. – 2015. – №44 (597). – С. 9–18.; Вишневский А. Смертность от болезней системы кровообращения и продолжительность жизни в России / А. Вишневский, Е. Андреев, С. Тимонин // Демографическое обозрение. – 2016. – Т. 3. №1. – С. 6–34.; Голухова Е.З. Заболевания сердечно-сосудистой системы – пандемия современной эпохи. Социальное значение и последствия // Ассоциация сердечно-сосудистых хирургов России. 2010 [Электронный ресурс]. – Режим доступа: http://heart-master.com/clinic/cardiovascular_disease (дата обращения: 31.10.2021).; Дьяченко Т.С. Современные аспекты эпидемиологии болезней системы кровообращения в крупном субъекте юга России / Т.С. Дьяченко, В.В. Ивашева, Е.Д. Картамышева [и др.] // Волгоградский научно-медицинский журнал. – 2016. – №2. – С. 4–10.; Карпунина Н.С. Медико-демографическая характеристика и факторы риска сердечно-сосудистых заболеваний у жителей Пермского края // Медицина и образование в Сибири. – 2012. – №1 [Электронный ресурс]. – Режим доступа: http://www.ngmu.ru/cozo/mos/article/text_full.php?id=576 (дата обращения: 01.11.2021).; Каусова Г.К. К вопросу профилактики сердечно-сосудистых заболеваний / Г.К. Каусова, Е.Т. Толеу, А.Т. Кодасбаева [и др.] // Вестник Казахстанского Национального медицинского университета. – 2017. – №4. – С. 40–42.; Кром И.Л. Медико-социологическая концептуализация феномена инвалидности при болезнях системы кровообращения: автореф. дис. . д-ра мед. наук. – Волгоград, 2007 [Электронный ресурс]. – Режим доступа: http://medical-diss.com/medicina/mediko-sotsiologicheskaya-kontseptualizatsiya-fenomena-invalidnosti-pri-boleznyah-sistemy-krovoobrascheniya (дата обращения: 01.11.2021).; Маринина Е.С. Научное обоснование основных путей профилактики сердечно-сосудистых заболеваний / Е.С. Маринина, О.А. Нагибин // Universum: Медицина и фармакология: электронный научный журнал. – 2018. – №2 (47).; Милованова Е.В. Инновационные технологии в организации профилактической работы при оказании высокотехнологичной медицинской помощи в БУ ХМАО–Югры «Окружной кардиологический диспансер «Центр диагностики и сердечно-сосудистой хирургии» / Е.В. Милованова, Е.В. Гапонова // Здравоохранение Югры: опыт и инновации. – 2016. – №1 (6). – С. 7–9.; Оганов Р.Г. Демографические тенденции в Российской Федерации: вклад болезней системы кровообращения / Р.Г. Оганов, Г.Я. Масленникова // Кардиоваскулярная терапия и профилактика. – 2012. – Т. 11. №1. – С. 5–10.; Стекольщиков Л.В. Болезни системы кровообращения – одна из основных причин смертности населения трудоспособного возраста // Вестник Чувашского университета. – 2012. – №3. – С. 513–517.; Чазова И.Е. Борьба с сердечно-сосудистыми заболеваниями: проблемы и пути их решения на современном этапе / И.Е. Чазова, Е.В. Ощепкова // Вестник Росздравнадзора. – 2015. – №5. – С. 7–11.; Benjamin E. J., Blaha M., Chiuve S., Cushman M., et al. Heart disease and stroke statistics-2017 update: a report from the American Heart Association. Circulation. 2017. – V:135 (10):146–603. doi:10.1161/CIR.0000000000000485; Каусова Г.К. Инвалидность от сердечно-сосудистых заболеваний // Проблемы социальной гигиены, здравоохранения и истории медицины. – 2005. №2. – С. 24–25.; Кузьмишин Л.Е. Характеристика количественной оценки степени нарушений функций организма вследствие хронических ревматических болезней сердца при экспертно-реабилитационной диагностике // Медико-социальные проблемы инвалидности. – 2015. – №1. – С. 52–56.; Немсцверидзе Э.Я. Инвалидность среди трудоспособного населения как медико-демографическая проблема // Социальные аспекты здоровья населения. – 2012. – Т 1. №23. – С. 1–10.; Нургазизова А.К. Применение международной классификации функционирования, ограничений жизнедеятельности и здоровья для оценки реабилитации больных сердечно-сосудистыми заболеваниями / А.К. Нургазизова, В.В. Сергеева, А.Ю. Родионова // Практическая медицина. – 2014. – Т. 6. №82. – С. 29–36.; Олькова Н.В. Новые классификации и критерии в работе учреждений медико-социальной экспертизы / Н.В. Олькова, Т.К. Муртазина, О.А. Черкасова [и др.] // Медико-социальные проблемы инвалидности. – 2016. – №2. – С. 71–76.; Платонихина А.М. Динамика первичной инвалидности вследствие болезней системы кровообращения населения трудоспособного возраста г. Оренбурга и Оренбургской области / А.М. Платонихина, Т.Н. Смагина // Медико-социальная экспертиза и реабилитация. – 2015. – Т. 18. №1. – С. 21–24.; Пузин С.Н. Характеристики показатели инвалидности вследствие ревматических болезней сердца в Российской Федерации / С.Н. Пузин, Н.А. Титова, М.П. Баньковская [и др.] // Медико-социальная экспертиза и реабилитация. – 2001. – №4. – С. 30–32.; Пузин С.Н. Эпидемиологическая картина инвалидности у различных демографических контингентов населения в Российской Федерации в аспекте социальной политики государства / С.Н. Пузин, М.А. Дымочка, С.А. Бойцов [и др.]. // Медико-социальная экспертиза и реабилитация. – 2018. – Т. 21. №1. – С. 50–54.; Пузин С.Н. Современные тенденции региональной дифференциации инвалидности вследствие болезней системы кровообращения у граждан пожилого возраста в Российской Федерации / С.Н. Пузин, М.А. Шургая, С.С. Меметов [и др.] // Вестник Всероссийского общества специалистов по медико-социальной экспертизе, реабилитации и реабилитационной индустрии. – 2017. – №1. – С. 33–41.; Саидов М.Б. Инвалидность вследствие болезней системы кровообращения в трудоспособном возрасте и особенности медико-социальной реабилитации: автореф. дис. . канд. мед. наук. – М., 2006 [Электронный ресурс]. – Режим доступа: http://medical-diss.com/medicina/invalidnost-vsledstvie-bolezney-sistemy-krovoobrascheniya-v-trudosposobnom-vozraste-i-osobennosti-mediko-sotsialnoy-reabilitacii (дата обращения: 02.11.2021).; Чандирли С.А. Динамика показателей общей численности впервые и повторно признанных инвалидами вследствие хронических ревматических болезней сердца в Российской Федерации за 2011–2006 гг. // Медико-социальная экспертиза и реабилитация. – 2008. – №4. – С. 26–28.; Эрдес Ш.Ф. Инвалидность взрослого населения России, обусловленная ревматическими заболеваниями / Ш.Ф. Эрдес, О.М. Фоломеева // Русский медицинский журнал. – 2007. – №26. – С. 1946.; Казаков В.Ф. Реабилитация при заболеваниях сердечно-сосудистой системы / В.Ф. Казаков, В.В. Серяков, под ред. И.Н. Макаровой. – М.: ГЭОТАР-Медиа, 2010. – 304 с.; Гальцева Н.В. Реабилитация в кардиологии и кардиохирургии // Клиницист. – 2015. – Т. 9. №2. – С.13–22.; Горбаченков А.А. Коронарная реабилитация – от покоя до физических тренировок и многофакторной профилактики // Российский кардиологический журнал. – 2006. – №2. – С. 6–10.; Ades P.A., Savage P.D., Harvey-Berino J. The treatment of obesity in cardiac rehabilitation. JCardiopulm. Rehabil. Prev. 2010. –30 (5): 289–98. doi:10.1097/HCR.0b013e3181d6f9a8

  6. 6
    Academic Journal

    Πηγή: Сучасна педіатрія. Україна; № 3(123) (2022): Сучасна педіатрія. Україна; 66-72
    Modern Pediatrics. Ukraine; No. 3(123) (2022): Modern pediatrics. Ukraine; 66-72
    Modern Pediatrics. Ukraine; № 3(123) (2022): Modern pediatrics. Ukraine; 66-72

    Περιγραφή αρχείου: application/pdf

    Σύνδεσμος πρόσβασης: http://mpu.med-expert.com.ua/article/view/258244

  7. 7
    Academic Journal

    Συγγραφείς: M. Z. Saidov, М. З. Саидов

    Συνεισφορές: нет

    Πηγή: Medical Immunology (Russia); Том 23, № 6 (2021); 1239-1270 ; Медицинская иммунология; Том 23, № 6 (2021); 1239-1270 ; 2313-741X ; 1563-0625

    Περιγραφή αρχείου: application/pdf

    Relation: https://www.mimmun.ru/mimmun/article/view/2386/1484; https://www.mimmun.ru/mimmun/article/downloadSuppFile/2386/8703; https://www.mimmun.ru/mimmun/article/downloadSuppFile/2386/8704; https://www.mimmun.ru/mimmun/article/downloadSuppFile/2386/8705; https://www.mimmun.ru/mimmun/article/downloadSuppFile/2386/8706; https://www.mimmun.ru/mimmun/article/downloadSuppFile/2386/8707; https://www.mimmun.ru/mimmun/article/downloadSuppFile/2386/8708; https://www.mimmun.ru/mimmun/article/downloadSuppFile/2386/8709; https://www.mimmun.ru/mimmun/article/downloadSuppFile/2386/8710; https://www.mimmun.ru/mimmun/article/downloadSuppFile/2386/8711; https://www.mimmun.ru/mimmun/article/downloadSuppFile/2386/8712; https://www.mimmun.ru/mimmun/article/downloadSuppFile/2386/8713; https://www.mimmun.ru/mimmun/article/downloadSuppFile/2386/8714; https://www.mimmun.ru/mimmun/article/downloadSuppFile/2386/8715; https://www.mimmun.ru/mimmun/article/downloadSuppFile/2386/8716; https://www.mimmun.ru/mimmun/article/downloadSuppFile/2386/8717; https://www.mimmun.ru/mimmun/article/downloadSuppFile/2386/8718; https://www.mimmun.ru/mimmun/article/downloadSuppFile/2386/8719; https://www.mimmun.ru/mimmun/article/downloadSuppFile/2386/8720; Адо А.А. Патофизиология фагоцитов (краткий очерк истории и современного состояния учения о фагоцитозе). М.: Медгиз, 1961. 295 с.; Богомолец А.А. Избранные труды в трех томах. Киев: Издательство Академии наук УССР, 1957. Т. 2. С. 312-323.; Воспаление. Руководство для врачей. Под ред. В.В. Струкова, В.С. Паукова. М.: Медицина, 1995. С. 219.; Давыдовский И.В. Общая патология человека. М.: Медицина, 1969. С. 425, 317.; Кумар А., Аббас А.К., Фаусто А. Основы патологии заболеваний по Роббинсу и Котрану. М.: Логосфера, 2016. Т. 2, 3.; Маянский Д.Н. Хроническое воспаление. М.: Медицина, 1991. С. 24. [Mayanskiy D.N. Chronic inflammation]. Moscow: Medicine, 1991, p. 24.; Мечников И.И. Лекции о сравнительной патологии воспаления. М.: АН СССР, 1954. 267 с.; Насонов Е.Л., Авдеева А.С. Иммуновоспалительные ревматические заболевания, связанные с интерфероном типа I: новые данные // Научно-практическая ревматология, 2019. Т. 57, № 4. С. 452-461.; Раденска-Лоповoк С.Г. Иммуноморфологическая характеристика синовиальной оболочки при ревматических заболеваниях // Архив патологии, 2016. № 4. C. 64-68.; Саидов М.З., Насонова В.А., Османов А.О., Мамаев И.А., Раденска-Лоповок С.Г., Насонов Е.Л. Иммунофенотипирование клеток воспалительного инфильтрата при ревматоидных синовитах // Иммунология, 2002. Т. 23, № 1. С.18-22.; Саидов М.З., Насонова В.А., Османов А.О., Мамаев И.А., Раденска-Лоповок С.Г., Насонов Е.Л. Иммуногистохимическое изучение клеток воспалительного инфильтрата при дерматомиозите // Иммунология, 2002. Т. 23, № 3. 147-152.; Серов В.В., Шехтер А.Б. Соединительная ткань. М., Медицина, 1981. 312 с.; Струков А.И., Бегларян А.Г. Патологическая анатомия и патогенез коллагеновых болезней. М.: Медгиз, 1963. 323 с.; Эйнгрон А.Г. Патологическая анатомия и патологическая физиология. М.: Медицина, 1983. 304 с.; Alam J., Yong C.K, Choi Y. Potential role of bacterial infection in autoimmune diseases: a new aspect of molecular mimicry. Immune Netw., 2014, Vol.14, no. 1, pp. 7-13.; Alsina L., Israelsson E., Altman M.C., Dang K.K., Ghandil P., Chaussabel D. A narrow repertoire of transcriptional modules responsive to pyogenic bacteria is impaired in patients carrying loss-of-function mutations in MYD88 or IRAK4. Nat. Immunol., 2014, Vol. 15, no. 12, pp. 1134-1142.; Angiolillo A.L., Kanegane H., Sgadari C., Reaman G.H., Tosato G. Interleukin-15 promotes angiogenesis in vivo. Biochem. Biophys. Res. Commu., 1997, Vol. 233, no. 1, pp. 231-237.; Arai M., Ikawa Y., Chujo S., Hamaguchi Y., Ishida W., Hasegawa M., Mukaida N., Fujimoto M., Takehara K. Chemokine receptors CCR2 and CX3CR1 regulate skin fibrosis in the mouse model of cytokine-induced systemic sclerosis. J. Dermatol. Sci., 2013, Vol. 69, no. 3, pp. 250-258.; Auerbach W., Auerbach R. Angiogenesis inhibition: a review. Pharmac. Ther., 1994, Vol. 63, no. 3, pp. 265-311.; Bachem A., Hartung E., Guttler S., Mora A., Zhou X., Hegemann A., Plantinga M., Mazzini E., Stoitzner P., Gurka S., Henn V., Mages H.W., Kroczek A. Expression of XCR1 characterizes the Batf3-dependent lineage of dendritic cells capable of antigen cross-presentation. Front. Immunol., 2012, Vol. 3, 214. doi:10.3389/fimmu.2012.00214.; Banchereau J., Pascual V. Type I interferon in systemic lupus erythematosus and other autoimmune diseases. Immunity, 2006, Vol. 25, no. 3, pp. 383-392.; Banchereau R., Cepika A.M., Banchereau J., Pascual V. Understanding human autoimmunity and autoinflammation through transcriptomics. Annu. Rev. Immunol., 2017, Vol. 35, pp. 337-370.; Barkauskaite V., Ek M., Popovic K., Harris H.E., Wahren-Herlenius M., Nyberg F. Translocation of the novel cytokine HMGB1 to the cytoplasm and extracellular space coincides with the peak of clinical activity in experimentally UV-induced lesions of cutaneous lupus erythematosus. Lupus, 2007, Vol. 16, no. 10, pp. 794-802.; Baumann I., Kolowos W., Voll R.E., Manger B., Gaipl U., Neuhuber W.L. Impaired uptake of apoptotic cells into tingible body macrophages in germinal centers of patients with systemic lupus erythematosus. Arthritis Rheum., 2002, Vol. 46, no. 1, pp. 191-201.; Blanco P., Palucka A.K., Gill M., Pascual V., Banchereau J. Induction of dendritic cell differentiation by IFNalpha in systemic lupus erythematosus. Science, 2001, Vol. 294, pp. 1540-1543.; Blander J.M. Regulation of the cell biology of antigen cross-presentation. Annu. Rev. Immunol., 2018, Vol. 36, pp. 717-753.; Blissett A.R., Garbellini D., Calomeni E.P., Mihai C., Elton T.S., Agarwai G. Regulation of collagen fibrillogenesis by cell-surface expression of kinase dead DDR2. J. Mol. Biol., 2009, Vol. 385, 902-911.; Blokland S.L.M., Hillen M.R., Kruize A.A., Meller S., Homey B., Smithson G.M., Radstake T.R.D.J., van Roon J. Increased CCL25 and T helper cells expressing CCR9 in the salivar glands of patients with primary sjogren’s syndrome: potential new axis in lymphoid neogenesis. Arthr. Rheumatol., 2017, Vol. 69, no. 10, pp. 2038-2051.; Braga T.T., Agudelo J.S., Camara N.O. Macrophages during the fibrotic process: M2 as friend and foe. Front Immunol., 2015, Vol. 6, 602. doi:10.3389/fimmu.2015.00602.; Breitfeld D., Ohl L., Kremmer E., Ellwart J., Sallusto F., Lipp M. Forster R. Follicular B helper T cells express CXC chemokine receptor 5, localize to B cell follicles, and support immunoglobulin production. J. Exp. Med., 2000, Vol. 192, no. 11, pp. 1545-1552.; Bresnihan B., Pontifex E., Thurlings R.M., Vinkenoog M., Gabalawy H., Fearon U., Fitzgerald O., Gerlag D.M., Rooney T., van de Sande M.G., Veale D., Vos K., Tak P.-P. Synovial tissue sublining CD68 expression is a biomarker of therapeutic response in rheumatoid arthritis clinical trials: consistency across centers. J. Rheumatol., 2009, Vol. 36, no. 8, pp. 1800-1802.; Brinkmann V., Reichard U., Goosmann C., Fauler B., Uhlemann Y., Weiss D., Weinrauch Y., Zychlinsky A. Neutrophil extracellular traps kill bacteria. Science, 2004, Vol. 303, pp. 1532-1535.; Burrage P.S., Mix K.S., Brinckerhoff C.E. Matrix metallоproteinases: role in arthritis. Front Biosci., 2006, Vol. 11, no. 1, pp. 529-543.; Canna S.W., de Jesus A.A., Gouni S., Brooks S.R., Marrero B., Liu Y., DiMattia M.A., Zaal K.J.M., Montealegre Sanchez G.A., Kim H., Chapelle D., Plass N., Huang Y., Villarino A.V., Biancotto A., Fleisher T.A., Duncan J.A., O’Shea J.J., Benseler S., Grom A., Deng Z., Laxer R.M., Golbdach-Mansky R. An activating NLRC4 inflammasome mutation causes autoinflammation with recurrent macrophage activation syndrome. Nat. Genet., 2014, Vol. 46, no. 10, pp. 1140-1146.; Carmona-Rivera C., Zhao W., Yalavarthi S., Kaplan M.J. Neutrophil extracellular traps induce endothelial dysfunction in systemic lupus erythematosus through the activation of matrix metalloproteinase-2. Ann. Rheum. Dis., 2015, Vol. 74, no. 7, pp. 1417-1424.; Carulli M. T., Ong V.H., Ponticos M., Shiwen X., Abraham D.J., Black C.V., Denton C.P. Chemokine receptor CCR2 expression by systemic sclerosis fibroblasts: evidence for autocrine regulation of myofibroblast differentiation. Arthritis Rheum., 2005, Vol. 52, no. 12, pp. 3772-3782.; Casciola-Rosen L.A., Anhalt G., Rosen A. Autoantigens targeted in systemic lupus erythematosus are clustered in two populations of surface structures on apoptotic keratinocytes. J. Exp. Med., 1994, Vol. 179, no. 4, pp. 1317-1330.; Chang A., Henderson S.G., Brandt D., Liu N., Guttikonda R., Hsieh C., Kaverina N., Utset T.O., Meehan S.M., Quigg R.J., Meffre E., Clark R. In situ B cell-mediated immune responses and tubulointerstitial inflammation in human lupus nephritis. J. Immunol., 2011, Vol. 186, no. 3, pp. 1849-1860.; Christensen S.R., Shupe J., Nickerson K., Kashgarian M., Flavell R.A., Shlomchik M.J. Toll-like receptor 7 and TLR9 dictate autoantibody specificity and have opposing inflammatory and regulatory roles in a murine model of lupus. Immunity, 2006. Vol. 25, no. 3, pp. 417-428.; Crawford Y., Kasman I., Yu L. Zhong C., Wu X., Modrusan Z., Kaminker J., Ferrara N. PDGF-C mediates the angiogenic and tumorigenic properties of fibroblasts associated with tumors refractory to anti-VEGF treatment. Cancer Cell, 2009, Vol. 15, no. 1, pp. 21-34.; Crosby J.R., Tappan K.A., Seifert R.A., Bowen-Pope D.F. Chimera analysis reveals that fibroblasts and endothelial cells require platelet-derived growth factor receptor-beta expression for participation in reactive connective tissue formation in adults but not during development. Am. J. Pathol., 1999, Vol. 154, pp. 131-1321.; Crotty S. Follicular helper CD4 T cells (TFH). Ann. Rev. Immunol., 2011, Vol. 29, pp. 621-663.; Crow Y.J. Type I interferonopathies: a novel set of inborn errors of immunity. Ann. N. Y. Acad. Sci., 2011, Vol. 1238, no. 1, pp. 91-98.; Darrah E., Rosen A. Granzyme B cleavage of autoantigens in autoimmunity. Cell Death Differ., 2010, Vol. 17, no. 4, pp. 624-632.; De Paepe B., Creus K.K., De Bleecker J.L. Chemokines in idiopathic inflammatory myopathies. Front. Biosci., 2008, Vol. 13, pp. 2548-2577.; De Paepe B., Creus K. K., De Bleecker J. L. Role of cytokines and chemokines in idiopathic inflammatory myopathies. Curr. Opin. Rheumatol., 2009, Vol. 21, no. 6, pp. 610-616.; Decker P., Kotter I., Klein R., Berner B., Rammensee H.G. Monocyte-derived dendritic cells over-express CD86 in patients with systemic lupus erythematosus. Rheumatology, 2006, Vol. 45, no. 9, pp. 1087-1095.; Dennis G. Jr., Holweg C.T., Kummerfeld S.K., Choy D.F., Setiadi A.F., Hackney J.A., Haverty P.M., Gilbert H., Lin W.Y., Diehl L., Fischer S., Song A., Musselman D., Klearman M., Gabay C., Kavanaugh A., Endres J., Fox D.A., Martin F., Townsend M. Synovial phenotypes in rheumatoid arthritis correlate with response to biologic therapeutics. Arthr. Res. Ther., 2014, Vol. 16, no. 2, R90. doi:10.1186/ar4555.; Dieguez-Gonzalez R., Calaza M., Perez-Pampin E. Association of interferon regulatory factor 5 haplotypes, similar to that found in systemic lupus erythematosus, in a large subgroup of patients with rheumatoid arthritis. Art hritis Rheum., 2008, Vol. 58, no. 5, pp. 1264-1274.; Doster R.S., Rogers L.M., Gaddy J.A., Aronoff D.M. Macrophage Extracellular Traps: A Scoping Review. J. Innate Immun., 2017, Vol. 10, no. 1, pp. 3-13.; Ek M., Popovic K., Harris H.E., Naucler C.S., Wahren-Herlenius M. Increased extracellular levels of the novel proinflammatory cytokine high mobility group box chromosomal protein 1 in minor salivary glands of patients with Sjogren’s syndrome. Arthritis Rheum., 2006, Vol. 54, no. 7, pp. 2289-2294.; Eming S.A., Wynn T.A., Martin P. Inflammation and metabolism in tissue repair and regeneration. Science, 2017, Vol. 356, pp. 1026-1030.; Fang C., Luo T., Lin, L. The correlational research among serum CXCL13 levels, circulating plasmablasts and memory B cells in patients with systemic lupus erythematosus: a STROBE-compliant article. Medicine, 2017, Vol. 96, no. 48, e8675. doi:10.1097/MD.0000000000008675.; Feng D., Sangster-Guity N., Stone R., Korczeniewska J., Mancl M.E., Fitzgerald-Bocarsly P., Barnes B.J. Differential requirement of histone acetylase and deacetylase activities for IRF5-mediated proinflammatory cytokine expression. J. Immunol., 2010, Vol. 185, no. 10, pp. 6003-6012.; Fernando M.A., Stevens C.R., Walsh E.C., Jager F., Goyette P., Plenge R., Vyse T., Rioux J. Defining the role of the mhc in autoimmunity: a review and pooled analysis. PLoS Genet., Vol. 4, no. 4, e1000024. doi:10.1371/journal.pgen.1000024.; Firestein G.S. Invasive fibroblast-like synoviocytes in rheumatoid arthritis. Passive responders or transformed aggressors? Arthritis Rheum., 1996, Vol. 39, no. 11, pp. 1781-1790.; Garcia-Romo G.S., Caielli S., Vega B., Connolly J., Allantaz F., Xu Z., Punaro M., Baisch J., Guiducci C., Coffman R.L., Barrat F.J., Banchereau J., Pascual V. Netting neutrophils are major inducers of type I IFN production in pediatric systemic lupus erythematosus. Sci. Transl. Med., 2011, Vol. 3, Iss. 73, 73ra20. doi:10.1126/scitranslmed.3001201.; Gregersen P.K., Silver J., Winchester R.J. The shared epitope hypothesis. An approach to understanding the molecular genetics of susceptibility to rheumatoid arthritis. Arthritis Rheum., 1987, Vol. 30, no. 11, pp. 1205-1213.; Griffith J.W., Sokol C.L., Luster A.D. Chemokines and chemokine receptors: positioning cells for host defense and immunity. Annu. Rev. Immunol., 2014, Vol. 32, pp. 659-702.; Gross H., Hennard C., Masouris I., Cassel C., Barth S. Binding of the heterogeneous ribonucleoprotein K (hnRNP K) to the Epstein-Barr virus nuclear antigen 2 (EBNA2) enhances viral LMP2A expression. PLoS One, 2012, Vol. 7, no. 8, e42106. doi:10.1371/journal.pone.0042106.; Gupta A.K., Joshi M.B., Philippova M., Erne P., Hasler P., Hahn S., Resink T.J. Activated endothelial cells induce neutrophil extracellular traps and are susceptible to NETosis-mediated cell death. FEBS Lett., 2010, Vol. 584, pp. 3193-3197.; Hase K., Tani K., Shimizu T., Ohmoto Y., Matsushima K., Sone S. Increased CCR4 expression in active systemic Lupus erythematosus. J. Leukocyte Biol., 2001, Vol. 70, no. 5, pp. 749-755.; Helming L., Gordon S. Molecular mediators of macrophage fusion. Trends Cell Biol., 2009, Vol. 19, no. 5, pp. 514-522.; Hernandez-Molina G., Michel-Peregrina M., Hernandez-Ramirez D.F., Sanchez-Guerrero J., Llorente L. Chemokine saliva levels in patients with primary Sjogren’s syndrome, associated Sjogren’s syndrome, pre-clinical Sjogren’s syndrome and systemic autoimmune diseases. Rheumatology, 2011, Vol. 50, no. 7, pp. 1288-1292.; Herrmann M., Voll R.E., Zoller O.M., Hagenhofer M., Ponner B.B., Kalden J.R. Impaired phagocytosis of apoptotic cell material by monocyte-derived macrophages from patients with systemic lupus erythematosus. Arthritis Rheum.,1998, Vol. 41, no. 7, pp. 1241-1250.; Higashi-Kuwata N., Makino T., Inoue Y., Takeya M., Ihn H. Alternatively activated macrophages (M2 macrophages) in the skin of patient with localized scleroderma. Exp. Dermatol., 2009, Vol. 18, no. 8, pp. 727-729.; Higgs B.W., Liu Z., White B., Zhu W., White W., Morehouse C., Brohawn P., Kiener P.A., Richman L., Fiorentino D., Greenberg S.A., Jallal B., Yao Y. Patients with systemic lupus erythematosus, myositis, rheumatoid arthritis and scleroderma share activation of a common type I interferon pathway. Ann. Rheum. Dis., 2011, Vol. 70, no. 11, pp. 2029-2036.; Hjelmström P. Lymphoid neogenesis – de novo formation of lymphoid tissue in chronic inflammation through expression of homing chemokines. J. Leuk. Biol., 2001, Vol. 69, pp. 331-339.; Hjelmström P., Fjell J., Nakagawa T., Sacca R., Cuff C.A., Ruddle N.H. Lymphoid tissue homing chemokines are expressed in chronic inflammation. Am. J. Pathol., 2000, Vol. 156, no. 4, pp. 1133-1138.; Horikawa S., Ishii Y., Hamashima T., Yamamoto S., Mori H., Fujimori T., Shen J., Inoue R., Nishizono H., Itoh H., Majima M., Abraham D., Miyawaki T., Sasahara M. PDGFRα plays a crucial role in connective tissue remodeling. Sci. Rep., 2015, Vol. 5, 17948. doi:10.1038/srep17948.; Humby F., Bombardieri M., Manzo A., Kelly S., Blades M.C., Kirkham B. Ectopic lymphoid structures support ongoing production of class- switched autoantibodies in rheumatoid synovium. PLoS Med., 2009, Vol. 6, e1. doi:10.1371/journal.pmed.0060001.; Jara L.J., Medina G., Saavedra M.A. Autoimmune manifestations of infections. Curr. Opin. Rheumatol., 2018, Vol. 30, no. 46, pp. 373-379.; Jego G., Palucka A.K., Blanck J.P., Chalouni C., Pascual V., Banchereau J. Plasmacytoid dendritic cells induce plasma cell differentiation through type I interferon and interleukin 6. Immunity, 2003, Vol. 19, no. 2, pp. 225-234.; Jenkins M.K., Khoruts A., Ingulli E., Mueller D.L., McSorley S.J., Reinhardt R., Itano A., Pape A. In vivo activation of antigen- specific CD4 T cells. Annu. Rev. Immunol., 2001, Vol. 19, pp. 23-45.; Jesus A.A., Goldbach-Mansky R. IL-1 blockade in autoinflammatory syndromes. Annu. Rev. Med., 2014, Vol. 65, pp. 223-244.; Jorch S., Kubes P. An emerging role for neutrophil extracellular traps in noninfectious disease. Nat. Med., 2017, Vol. 23, no. 3, pp. 279-287.; Jurewicz М.М., Stern. L.G. Class II MHC antigen processing in immune tolerance and inflammation. Immunogenetics, 2019, Vol. 71, no. 3, pp. 171-187.; Kang Y.M., Zhang X., Wagner U. G. Yang H., Beckenbaugh R.D., Kurtin P.J., Goronzy J.J., Weyand C.M. CD8 T Cells are required for the formation of ectopic germinal centers in rheumatoid synovitis. J. Exp. Med., 2002, Vol. 195, no. 10, pp. 1325-1336.; Khandpur R., Carmona-Rivera C., Vivekanandan-Giri A., Gizinski A., Yalavarthi S., Knight J.S. NETs are a source of citrullinated autoantigens and stimulate inflammatory responses in rheumatoid arthritis. Sci. Transl. Med., 2013, Vol. 5, no. 178, 178ra40. doi:10.1126/scitranslmed.3005580.; Kiselyov A., Balakin K.V., Tkachenko S.E. VEGF/VEGFR signaling as a target for inhibiting angiogenesis. Expert Opin. Investig. Drugs, 2007, Vol. 16, pp. 83-107.; Klemperer P. The concept of collagen diseases. Am. J. Pathol, 1950, Vol. XXVI, no. 4, pp. 505-519.; Knecht H., Saremaslani P., Hedinger C. Immunohistological findings in Hashimoto’s thyroiditis, focal lymphocytic thyroiditis and thyroiditis de Quervain. Virchows Arch. A, 1981, Vol. 393, pp. 215-231.; Knight J.S., Carmona-Rivera C., Kaplan M.J. Proteins derived from neutrophil extracellular traps may serve as self-antigens and mediate organ damage in autoimmune diseases. Front. Immunol., 2012, Vol. 3, 380. doi:10.3389/fimmu.2012.00380.; Kobayashi K., Kaneda K., Kasama T. Immunopathogenesis of delayed-type hypersensitivity. Microsc. Res. Tech., 2001, Vol. 53, no. 4, pp. 241-245.; Koch A.E. Angiogenesis: implications for rheumatoid arthritis. Arthritis Rheum., 1998, Vol. 41, no. 6, pp. 951-962.; Koelink P.J., Overbeek. S.A., Braber S., Henricks P.A., Roda M.A., Verspaget H.W., Wolfkamp S.C., te Velde A.A., Jones C.W., Jackson P.L., Blalock J.E., Sparidans R.W., Kruijtzer J.A.W., Garssen J., Folkerts G., Kraneveld A.D. Collagen degradation and neutrophilic infiltration: a vicious circle in inflammatory bowel disease. Gut. 2014, Vol. 63, no. 4, pp. 578-587.; Kraan M.C., Haringman J.J., Post W.J., Versendaal J., Breedveld F.C., Tak P.P. Immunohistological analysis of synovial tissue for differential diagnosis in early arthritis. Rheumatology, 1999, Vol. 38, no. 11, pp. 1074-1080.; Krenn V., Souto-Carneiro M.M., Kim H.J., Berek C., Starostik P., Konig A. Histopathology and molecular pathology of synovial B-lymphocytes in rheumatoid arthritis. Histol. Histopathol., 2000, Vol. 15, pp. 791-798.; Kroenke M.A., Eto D., Locci M., Cho M., Davidson T., Haddad E.K., Crotty S. Bcl6 and Maf cooperate to instruct human follicular helper CD4T cell differentiation. J. Immunol., 2012, Vol. 188, no. 8, pp. 3734-3744.; Kuivaniemi H., Tromp G. Type III collagen (COL3A1): Gene and protein structure, tissue distribution, and associated diseases. Gene, 2019, Vol. 707, pp. 151-171.; Kunnumakkara A.B., Sailo B.L., Banik K., Harsha C., Prasad S., Gupta S.C., Bharti A.C., Aggarwal B.B. Chronic diseases, inflammation, and spices: how are they linked? J. Transl. Med., 2018, Vol. 16, 14. doi:10.1186/s12967-018-1381-2.; Lande R., Gregorio J., Facchinetti V., Chatterjee B., Wang Y.H., Homey B., Cao W., Wang Y.-H., Su B., Nestle F.O., Zal T., Mellman I., Schröder J.-M., Liu Y.-J., Gillet M. Plasmacytoid dendritic cells sense self-DNA coupled with antimicrobial peptide. Nature, 2007, Vol. 449, pp. 564-569.; Lau C.M., Broughton C., Tabor A.S., Akira S., Flavell R.A., Mamula M., Christensen S.R., Shlomchik M.J., Viglianti G.A., Rifkin I.R., Marshak-Rothstein A. RNA-associated autoantigens activate B cells by combined B cell antigen receptor/Toll-like receptor 7 engagement. J. Exp. Med., 2005, Vol. 202, no. 9, pp. 1171-1177.; Leadbetter E.A., Rifkin I.R., Hohlbaum A.M., Beaudette B.C., Shlomchik M.J., Marshak-Rothstein A. Chromatin-IgG complexes activate B cells by dual engagement of IgM and Toll-like receptors. Nature, 2002, Vol. 416, pp. 603-607.; Liao A.P., Salajegheh M., Nazareno R., Kagan J.C., Jubin R.G. Greenberg S.A. Interferon β is associated with type 1 interferon-inducible gene expression in dermatomyositis. Ann. Rheum. Dis., 2011, Vol. 70, no. 5, pp. 831-836.; Loo J., Spittle D.A., Newnham M. COVID-19, immunothrombosis and venous thromboembolism: biological mechanisms. Thorax, 2021, Vol. 76, no. 4, pp. 412-420.; Ma W-T., Gao F., Gu K., Chen D-K. The Role of Monocytes and Macrophages in autoimmune diseases: a comprehensive review. Front. Immunol., 2019, Vol. 10, 1140. doi:10.3389/fimmu.2019.01140.; Malmstrom V., Venalis P., Albrecht I. T cells in myositis. Arthritis Res. Ther., 2012, Vol. 14, no. 6, 230. doi.org/10.1186/ar4116.; Mantovani A., Sozzani S., Locati M., Allavena P., Sica A. Macrophage polarization: tumor-associated macrophages as a paradigm for polarized M2 mononuclear phagocytes. Trends Immunol., 2002, Vol. 23, no. 11, pp. 549-555.; Manzo A., Bombardieri M., Humby F., Pitzalis C. Secondary and ectopic lymphoid tissue responses in rheumatoid arthritis: from inflammation to autoimmunity and tissue damage/remodeling. Immunol. Rev., 2010, Vol. 233, pp. 267-285.; Masters S.L., Simon A., Aksentijevich I., Kastner D.L. Horror autoinflammaticus: the molecular pathophysiology of autoinflammatory disease. Annu. Rev. Immunol., 2009, Vol. 27, pp. 621-668.; McNally A.K., Anderson J.M. Interleukin-4 induces foreign body giant cells from human monocytes/ macrophages. Differential lymphokine regulation of macrophage fusion leads to morphological variants of multinucleated giant cells. Am. J. Pathol., 1995, Vol. 147, no. 5, pp. 1487-1499.; McNally A.K., Jones J.A., Macewan S.R., Colton E., Anderson J.M. Vitronectin is a critical protein adhesion substrate for IL-4-induced foreign body giant cell formation. J. Biomed. Mater. Res., 2008, Vol. 86, no. 2, pp. 535-543.; Means T.K., Latz E., Hayashi F., Murali M.R., Golenbock D.T., Luster A.D. Human lupus autoantibody-DNA complexes activate DCs through cooperation of CD32 and TLR9. J. Clin. Investig., 2005, Vol. 115, no. 2, pp. 407-417.; Miga A., Masters S., Gonzalez M., Noelle R.J. The role of CD40-CD154 interactions in the regulation of cell mediated immunity. Immunol. Investig., 2000, Vol. 29, no 2, pp. 111-114.; Miyabe Y., Lian J., Miyabe C., Luster A.D. Chemokines in rheumatic diseases: pathogenic role and therapeutic implications. Nat. Rev. Rheumatol., 2019, Vol. 15, pp. 731-746.; Moghaddas F., Masters S.L. Monogenic autoinflammatory diseases: cytokinopathies. Cytokine, 2015, Vol. 74, no. 2, pp. 237-246.; Moore B.B., Keane M.P., Addison C.L., Arenberg D.A., Strieter R.M. CXC chemokine modulation of angiogenesis: the importance of balance between angiogenic and angiostatic members of the family. J. Invest. Med., 1998, Vol. 46, no. 4, pp. 113-120.; Murphy G., Knauper V., Atkinson S., Butler G., English W., Hutton M., Stracke J., Clark I. Matrix metalloproteinases in arthritic disease. Arthritis Res., 2002, Vol. 4, Suppl. 3, pp. S39-S49.; Murshid A., Gong J., Calderwood S.K. The role of heat shock proteins in antigen cross presentation. Front. Immunol., 2012, Vol. 3, 63. doi:10.3389/fimmu.2012.00063.; Nakhasi H.L., Ramanujam M., Atreya C.D., Hobman T.C., Lee N. Rubella virus glycoprotein interaction with the endoplasmic reticulum calreticulin and calnexin. Arch. Virol., 2001, Vol. 146, pp. 1-14.; Nanki T., Hayashida K., El-Gabalawy H., Suson S., Shi K., Girschick H.J., Yavus S., Lipsky P.E. Stromal cell-derived factor-1-CXC chemokine receptor 4 interactions play a central role in CD4+ T-cell accumulation in rheumatoid arthritis synovium. J. Immunol., 2000, Vol. 165, no. 11, pp. 6590-6598.; Nanki T., Shimaoka T., Hayashida K., Taniguchi K., Yonehara S., Miyasaka N. Pathogenic role of the CXCL16-CXCR6 pathway in rheumatoid arthritis. Arthritis Rheum., 2005, Vol. 52, no. 10, pp. 3004-3014.; Ohtani H. Granuloma cells in chronic inflammation express CD205 (DEC205) antigen and harbor proliferating T lymphocytes: Similarity to antigen-presenting cells. Pathol. Int., 2013, Vol. 63, pp. 85-93.; Orr C., Najm A., Biniecka M., McGarry T., Ng C.T., Young F., Fearon U., Veale D.J. Synovial immunophenotype and anti-citrullinated peptide antibodies in rheumatoid arthritis patients: relationship to treatment response and radiologic prognosis. Arthr. Rheumatol., 2017, Vol. 69, no. 11, pp. 2114-2123.; Pagan A.J., Ramakrishnan L. The Formation and Function of Granulomas. Annu. Rev. Immunol., 2018, Vol. 36, pp. 639-665.; Page C., François C., Goëb V., Duverlie G. Human parvovirus B19 and autoimmune diseases. Review of the literature and pathophysiological hypotheses. J. Clin. Virol., 2015, Vol. 72, pp. 69-74.; Pap T., Shigeyama Y., Kuchen S., Fernihough J.K., Simmen B., Gay R.E. Differential expression pattern of membrane-type matrix metalloproteinases in rheumatoid arthritis. Arthritis Rheum., 2000, Vol. 43, no. 6, pp. 1226-1232.; Patel D.D., Zachariah J.P., Whichard L.P. CXCR3 and CCR5 ligands in the rheumatoid arthritis synovium. Clin. Immunol., 2001, Vol. 98, no. 1, pp. 39-45.; Pisetsky D.S., Erlandsson-Harris H., Andersson U. High-mobility group box protein 1 (HMGB1): an alarmin mediating the pathogenesis of rheumatic disease. Arthritis Res. Ther., 2008, Vol. 10, 209. doi:10.1186/ar2440.; Pitzalis C., Kelly S., Humby F. New learnings on the pathophysiology of RA from synovial biopsies. Curr. Opin. Rheumatol., 2013, Vol. 25, no. 3, pp. 334-344.; Randen I., Mellbye O.J., Forre O., Natvig J.B. The identification of germinal centres and follicular dendritic cell networks in rheumatoid synovial tissue. Scand. J. Immunol., 1995, Vol. 41, no. 5, pp. 481-486.; Raychaudhuri S., Sandor C., Stahl E.A., Freudenberg J., Lee H.S., Jia X., Alfredsson L., Padyukov L., Klareskog L., Worthington J., Siminovitch K.A., Bae S.-C., Plenge R.M., Gregersen P.K., de Bakker P.I. Five amino acids in three HLA proteins explain most of the association between MHC and seropositive rheumatoid arthritis. Nat. Genet., 2012, Vol. 44, no. 3, pp. 291-296.; Reglero-Real N., Colom B., Bodkin J.V., Nourshargh S. Endothelial cell junctional adhesion molecules: role and regulation of expression in inflammation. Arterioscler. Thromb. Vasc. Biol., 2016, Vol. 36, no. 10, pp. 2048-2057.; Rizzo C., Grasso G., Castaniti G., Ciccia F., Guggino G. Primary sjogren syndrome: focus on innate immune cells and inflammation. Vaccines, 2020, Vol. 8, no. 2, pp. 1-23.; Rock K.L., Kono H. The Inflammatory Response to Cell Death. Annu. Rev. Pathol. Mech. Dis., 2008, Vol. 3, pp. 99-126.; Rogers G.L., Shirley J.L., Zolotukhin I., Kumar S.P., Sherman A., Perrin G.Q., Hoffman B.E., Srivastava A., Basner-Tschakarjan E., Wallet M.A., Terhorst C., Biswas M., Herzog R.W. Plasmacytoid and conventional dendritic cells cooperate in cross-priming AAV capsid-specific CD8+ T cells. Blood, 2017, Vol. 129, no. 24, pp. 3184-3195.; Romero V., Fert-Bober J., Nigrovic P.A., Darrah E., Haque U.J., Lee D.M., van Eyk J., Rosen A., Andrate F. Immune-mediated pore- forming pathways induce cellular hypercitrullination and generate citrullinated autoantigens in rheumatoid arthritis. Sci. Transl. Med., 2013, Vol. 5, 209ra150. doi:10.1126/scitranslmed.3006869.; Rosen A., Casciola-Rosen L. Autoantigens as partners in initiation and propagation of autoimmune rheumatic diseases. Annu. Rev. Immunol., 2016, Vol. 34, pp. 395-420.; Rossi D., Zlotnik A. The biology of chemokines and their receptors. Annu. Rev. Immunol., 2000, Vol. 18, pp. 217-242.; Rot A., von Andrian U.H. Chemokines in innate and adaptive host defense: Basic Chemokinese Grammar for Immune Cells. Annu. Rev. Immunol., 2004, Vol. 22, pp. 891-928.; Salomonsson S., Larsson P., Tengner P., Mellquist E., Hjelmstrom P., Wahren-Herlenius M. Expression of the B Cell-attracting chemokine CXCL13 in the target organ and autoantibody production ectopic lymphoid tissue in the chronic inflammatory disease SjoÈgren’s syndrome. Scand. J. Immunol., 2002, Vol. 55, pp. 336-342.; Sarelius I.Y., Glading A.J. Control of vascular permeability by adhesion molecules. Tissue Barriers, 2015 Vol. 3, no. 1-2, e985954. doi:10.4161/21688370.2014.985954.; Sato N., Beitz J.G., Kato J., Yamamoto M., Clark J.W., Calabresi P., Frackelton A.R. Jr. Platelet- derived growth factor indirectly stimulates angiogenesis in vitro. Am. J. Pathol., 1993, Vol. 142, no. 4, pp. 1119-1130.; Scally S.W., Petersen J., Law S.C., Dudek N.L., Nel H.J., Loh K.L., Wijeyewickrema L.C., Eckle S.B.G., van Heemst J., Pike R.N., McCluskey J., Toes R.E., La Gruta N.L., Purcell A.W., Reid H.H., Thomas R., Rossjohn J. A molecular basis for the association of the HLA-DRB1 locus, citrullination, and rheumatoid arthritis. J. Exp. Med., 2013, Vol. 210, no. 12, pp. 2569-2582.; Scheel T., Gursche A., Zacher J., Haupl T., Berek C. V-region gene analysis of locally defined synovial B and plasma cells reveals selected B cell expansion and accumulation of plasma cell clones in rheumatoid arthritis. Arthritis Rheum., 2011, Vol. 63, no. 1, pp. 63-72.; Schellekens G.A., de Jong B.A., van den Hoogen F.H., van de Putte L.B., van Venrooij W.J. Citrulline is an essential constituent of antigenic determinants recognized by rheumatoid arthritis-specific autoantibodies. J. Clin. Investig., 1998, Vol. 101, no. 1, pp. 273-281.; Schonbeck U., Brandt E., Petersen F., Flad H.D., Loppnow H., IL-8 specifically binds to endothelial but not to smooth muscle cells. J. Immunol., 1995, Vol. 154, no. 5, pp. 2375-2383.; Segura E., Amigorena S. Cross-presentation by human dendritic cell subsets. Immunol. Lett., 2014, Vol. 158, no. 1-2, pp. 73-78. .; Sharma D., Kanneganti T.D. The cell biology of inflammasomes: mechanisms of inflammasome activation and regulation. J. Cell Biol., 2016, Vol. 213, no. 6, pp. 617-629.; Shikama Y., Kobayashi K., Kasahara K., Kara S. Granuloma formation by artificial microparticles in vitro. Macrophages and monokines play a critical role in granuloma formation. Am. J. Pathol., 1989, Vol. 134, no. 6, pp. 1189-1199.; Silver J., Goyert S.M. Epitopes are the functional units of Ia molecules and form the molecular basis for disease susceptibility, human class II histocompatibility antigens. In: Ferrone S., Solheim B.G., Moller E., editors. HLA class II antigens: a comprehensive review of structure and function. Berlin, Springer. 1985, pp. 32-48.; Skotnicki J.S., Zask A., Nelson F.C., Albright J.D., Levin J.I. Design and synthetic considerations of matrix metalloproteinase inhibitors. Ann. N. Y. Acad. Sci., 1999, 30: 878, pp. 61-72.; Sneller М.С. Granuloma formation, implications for the pathogenesis of vasculitis. Cleve. Clin. J. Med., 2002, Vol. 69, Suppl. 2, pp. SII40-SII43.; Sottile J. Regulation of angiogenesis by extracellular matrix. Biochim. Biophys. Acta, 2004, Vol. 1654, pp. 13-22.; Spolski R., Leonard W.J. Interleukin-21: basic biology and implications for cancer and autoimmunity. Ann. Rev. Immunol., 2008, Vol. 26, pp. 57-79.; Steed A.L., Stappenbeck T.S. Role of viruses and bacteria-virus interactions in autoimmunity. Curr. Opin. Immunol., 2014, Vol. 31, pp. 102-107.; Stone R.C., Feng D., Deng J., Singh S., Yang L., Fitzgerald-Bocarsly P., Eloranta. M., Ronnblom L., Barnes B.J. Interferon regulatory factor 5 activation in monocytes of systemic lupus erythematosus patients is triggered by circulating autoantigens independent of type I interferons. Arthritis Rheum., 2012, Vol. 64, no. 3, pp. 788-798.; Stott D.I., Hiepe F., Hummel M., Steinhauser G., Berek C. Antigen-driven clonal proliferation of B cells within the target tissue of an autoimmune disease. The salivary glands of patients with SjoÈ gren’s syndrome. J. Clin. Invest., 1998, Vol. 102, pp. 938-946.; Strieter R.M., Polverini P.J., Kunkel S.L., Arenberg D.A., Burdick M.D., Kasper J., Dzuiba J., van Damme J., Walz A., Marriott D., Chan S.-Y., Roczniak S., Shanafelt A.B. The functional role of the ELR motif in CXC chemokinemediated angiogenesis. J. Biol. Chem., 1995, Vol. 270, no. 45, pp. 27348-27357.; Suzuki F., Kubota T., Miyazaki Y., Ishikawa K., Ebisawa M., Hirohata S., Ogura T., Mizusawa H., Imai T., Miyasaka N., Nanki T. Serum level of soluble CX3CL1/ fractalkine is elevated in patients with polymyositis and dermatomyositis, which is correlated with disease activity. Arthritis Res. Ther., 2012, Vol. 14, no. 2, R48. doi:10.1186/ar3761.; Swiecki M., Colonna M. The multifaceted biology of plasmacytoid dendritic cells. Nat. Rev. Immunol., 2015, Vol. 15, no. 8, pp. 471-485.; Szekanecz Z., Halloran M.M., Haskell C.J. Mediators of angiogenesis: the role of cellular adhesion molecules. Trends Glycosci. Glycotechnol., 1999, Vol. 58, 73.; Szekanecz Z., Koch A.E. Macrophages and their products in rheumatoid arthritis. Curr. Opin. Rheumatol., 2007, Vol. 19, no. 3, pp. 289-295.; Szekanecz Z., Koch A.E., Angiogenesis in rheumatoid arthritis. In: Rubanyi G.M., ed. Angiogenesis in health and disease. Marcel Dekker, New York, Basel, 2000, pp 429-450.; Szekanecz Z., Koch A.E. Chemokines and angiogenesis. Curr. Opin. Rheumatol., 2001, Vol. 13, no. 3, pp. 202-208.; Szekanecz Z., Szegedi G., Koch A.E. Angiogenesis in rheumatoid arthritis. J. Invest. Med., 1998, Vol. 46, no. 2, pp. 27-41.; Taniguchi N., Kawahara K., Yone K., Hashiguchi T., Yamakuchi M., Goto M., Inoue K., Yamada S., Ijiri K., Matsunaga S., Nakajima T., Komiya S., Maruyama I. High mobility group box chromosomal protein 1 plays a role in the pathogenesis of rheumatoid arthritis as a novel cytokine. Arthritis Rheum., 2003, Vol. 48, no. 4, pp. 971-981.; Tengnér P., Halse A-K., Haga H-J., Jonsson R., Wahren-Herlenius M. Detection of anti-Ro/SSA and anti-La/SSB auto-antibody-producing cells in salivary glands from patients with Sjögren’s syndrome. Arthritis Rheum., 1998, Vol. 41, no. 12, pp. 2238-2248.; Thurlings R.M., Wijbrandts C.A., Mebius R.E., Cantaert T., Dinant H.J., Teneke C.T., der Pouw-Kraan M., Verweij C.L., Baeten D., Tak P.P. Synovial Lymphoid Neogenesis Does Not Define a Specific Clinical Rheumatoid Arthritis Phenotype. Arthritis Rheum., 2008, Vol. 58, no. 6, pp. 1582-1589.; Turunen S., Huhtakangas J., Nousiainen T., Valkealahti M., Melkko J., Risteli J., Lehenkari P. Rheumatoid arthritis antigens homocitrulline and citrulline are generated by local myeloperoxidase and peptidyl arginine deiminases 2, 3 and 4 in rheumatoid nodule and synovial tissue. Arthritis Res. Ther., 2016, Vol. 18, 239. doi 10.1186/s13075-016-1140-9.; Ulfgren A.K., Grundtman C., Borg K., Alexanderson H., Andersson U., Harris H.E. Lundberg I.E. Downregulation of the aberrant expression of the inflammation mediator high mobility group box chromosomal protein 1 in muscle tissue of patients with polymyositis and dermatomyositis treated with corticosteroids. Arthritis Rheum., 2004, Vol. 50, no. 5., pp. 1586-1594.; van der Aa E., van Montfoort N., Woltman A.M. BDCA3+CLEC9A+ human dendritic cell function and development. Semin. Cell Dev. Biol., 2015, Vol. 41, pp. 39-48.; van der Woude D., Lie B.A., Lundstrom E., Balsa A., Feitsma A.L., Houwing-Duistermaat J.J., Verduijn W., Nordang G.B.N., Alfredsson L., Klareskog L., Pascual-Salcedo D., Gonzalez-Gay M.A., Lopez-Nevot M.A., Valero F., Roep B.O., Huizinga T.W.J., Kvien T.K., Martín J., Padyukov L., de Vries R.R.P., Toes R.E. Protection against anticitrullinated protein antibody-positive rheumatoid arthritis is predominantly associated with HLA- DRB1*1301: a meta-analysis of HLA-DRB1 associations with anti-citrullinated protein antibody-positive and anti-citrullinated protein antibody-negative rheumatoid arthritis in four European populations. Arthritis Rheum., 2010, Vol. 62, no. 5, pp. 1236-1245.; Veale D.J., Fearon U. Inhibition of angiogenic pathways in rheumatoid arthritis: potential for therapeutic targeting. Best Pract. Res. Clin. Rheumatol., 2006, Vol. 20, no. 5, pp. 941-947.; Vogel D.Y., Glim J.E., Stavenuiter A.W., Breur M., Heijnen P., Amor S., Dijkstra C.D., Beelen R.H. Human macrophage polarization in vitro: maturation and activation methods compared. Immunobiology, 2014, Vol. 219, no. 9, pp. 695-703.; Voll R.E., Urbonaviciute V., Herrmann M., Kalden J.R. High mobility group box 1 in the pathogenesis of inflammatory and autoimmune diseases. Isr. Med. Assoc. J., 2008, no. 10, pp. 26-28.; Williams G.T., Williams W.J. Granulomatous inflammation – a review. J. Clin. Pathol., 1983, Vol. 3, no. 7, pp. 723-733.; Wu L., Fan J., Matsumoto S., Watanabe T. Induction and regulation of matrix metalloproteinase-12 by cytokines and CD40 signaling in monocyte/macrophages. Biochem. Biophys. Res. Commun., 2000, Vol. 269, no. 3, pp. 808-815.; Wynn T.A., Vannella K.M. Macrophages in tissue repair, regeneration, and fibrosis. Immunity, 2016, Vol. 44, no. 3, 450-462. doi:10.1016/j.immuni.2016.02.015.; Yamanaka H. TNF as a target of inflammation in rheumatoid arthritis. Endocr. Metab. Immune, 2015, Vol. 15, pp. 129-134.; Yang B.G., Tanaka T., Jang M.H., Bai Z., Hayasaka H., Miyasaka M. Binding of lymphoid chemokines to collagen IV that accumulates in the basal lamina of high endothelial venules: its implications in lymphocyte trafficking. J. Immunol., 2007, Vol. 179, no. 7, pp. 4376-4382.; Young C.L., Adamson T.C., Vaughan J.H., Fox R.I. Immunohistologic characterization of synovial membrane lymphocytes in rheumatoid arthritis. Arthritis Rheum., 1984, Vol. 27, no. 1, pp. 32-39.; Zhu H., Fang X., Zhang D., Wu W., Shao M., Wang L., Gu L. Membrane-bound heat shock proteins facilitate the uptake of dying cells and cross-presentation of cellular antigen. Apoptosis, 2016, Vol. 21, no. 1, pp. 96-109.; https://www.mimmun.ru/mimmun/article/view/2386

  8. 8
    Academic Journal

    Συγγραφείς: Tsymbalista, O. L.

    Πηγή: Перинатологія і педіатрія; № 3(71) (2017): Перинатологія та педіатрія; 120-125
    Перинатология и педиатрия; № 3(71) (2017): Перинатология и педиатрия; 120-125
    Perinatologiya i pediatriya; № 3(71) (2017): Perinatologiya i pediatriya; 120-125

    Περιγραφή αρχείου: application/pdf

    Σύνδεσμος πρόσβασης: http://pip.med-expert.com.ua/article/view/PP.2017.71.120

  9. 9
  10. 10
    Academic Journal

    Πηγή: Rheumatology Science and Practice; Vol 57, No 3 (2019); 356-357 ; Научно-практическая ревматология; Vol 57, No 3 (2019); 356-357 ; 1995-4492 ; 1995-4484

    Περιγραφή αρχείου: application/pdf

    Relation: https://rsp.mediar-press.net/rsp/article/view/2739/1855; Эрдес ШФ. Определение термина «ревматология»: нужно ли это нам и как на это смотрят EULAR и ACR? Научно-практическая ревматология. 2018;56(3):389-90 [Erdes ShF. Definition of the term «rheumatology»: Do we need this and how do the EULAR and the ACR look at this? Nauchno-Prakticheskaya Revmatologiya = Rheumatology Science and Practice. 2018;56(3):389-90 (In Russ.)]. doi:10.14412/1995-4484-2018-389-390; Van der Heijde D, Daikh DI, Betteridge N, et al. Common language description of the term rheumatic and musculoskeletal diseases (RMDs) for use in communication with the lay public, healthcare providers and other stakeholders endorsed by the European League Against Rheumatism (EULAR) and the American College of Rheumatology (ACR). Ann Rheum Dis. 2018 Jun;77(6):829-32. doi:10.1136/ annrheumdis-2017-212565; Van der Heijde D, Daikh DI, Betteridge N, et al. Common Language Description of the Term Rheumatic and Musculoskeletal Diseases (RMDs) for Use in Communication With the Lay Public, Healthcare Providers, and Other Stakeholders Endorsed by the European League Against Rheumatism (EULAR) and the American College of Rheumatology (ACR). Arthritis Rheum. 2018;70(6):826-31. doi:10.1002/art.40448; Насонова ВА. Ревматология. В кн.: Большая Советская энциклопедия: В 30-ти т. Изд. 3-е. Москва: Советская Энциклопедия; 1975. Т. 21. С. 539-40 [Nasonova VA. Rheumatology. In: Bol'shaya Sovetskaya entsiklopediya [Great Soviet Encyclopedia]. 3rd ed. Moscow: Sovetskaya Entsiklopediya; 1975. Vol. 21. P. 539-40 (In Russ.)].; Сперанский АИ, Болотина АЮ, Максакова ЕН. В кн.: Большая медицинская энциклопедия: В 30-ти т. Изд. 3-е. Москва: Советская Энциклопедия; 1984. Т. 22. С. 102-5 [Speranskii AI, Bolotina AYu, Maksakova EN. In: Bol'shaya meditsinskaya entsiklopediya [Great Medical Encyclopedia]. 3rd ed. Moscow: Sovetskaya Entsiklopediya; 1984. Vol. 22. P. 102-5 (In Russ.)]; Насонов ЕЛ, редактор. Клинические рекомендации. Ревматология. Москва: ГЭОТАР-Медиа; 2005. 288 с. [Nasonov EL, editor. Klinicheskie rekomendatsii. Revmatologiya [Clinical guidelines. Rheumatology]. Moscow: GEOTAR-Media; 2005. 288 p. (In Russ.)].; Насонов ЕЛ, редактор. Ревматология: Клинические рекомендации. 2-е изд., испр. и доп. Москва: ГЭОТАР-Медиа; 2010. 752 с. [Nasonov EL, editor. Revmatologiya: Klinicheskie rekomendatsii [Rheumatology: Clinical guidelines]. 2nd ed. Moscow: GEOTARMedia; 2010. 752 p. (In Russ.)].; Насонов ЕЛ, редактор. Российские клинические рекомендации. Ревматология. Москва: ГЭОТАР-Медиа; 2017. 464 с. [Nasonov EL, editor. Rossiiskie klinicheskie rekomendatsii. Revmatologiya [Russian clinical guidelines. Rheumatology]. Moscow: GEOTAR-Media; 2017. 464 p. (In Russ.)].

  11. 11
    Academic Journal

    Συγγραφείς: Kosilova, S. Ye.

    Πηγή: Zaporozhye Medical Journal; No. 1 (2017): Zaporozhye Medical Journal ; Запорожский медицинский журнал; № 1 (2017): Запорізький медичний журнал ; Запорізький медичний журнал; № 1 (2017): Запорізький медичний журнал ; 2310-1210 ; 2306-4145

    Περιγραφή αρχείου: application/pdf

    Διαθεσιμότητα: http://zmj.zsmu.edu.ua/article/view/91712

  12. 12
    Academic Journal

    Πηγή: Rheumatology Science and Practice; Vol 55, No 5 (2017); 521-525 ; Научно-практическая ревматология; Vol 55, No 5 (2017); 521-525 ; 1995-4492 ; 1995-4484 ; 10.14412/rsp20175

    Περιγραφή αρχείου: application/pdf

    Relation: https://rsp.mediar-press.net/rsp/article/view/2435/1620; Балабанова РМ, Дубинина ТВ, Эрдес ШФ. Динамика заболеваемости ревматическими заболеваниями взрослого населения России за 2010–2014 гг. Научно- практическая ревматология. 2016;54(3):266-70 [Balabanova RM, Dubinina TV, Erdes SрF. Trends in the incidence of rheumatic diseases in the adult population of Russia over 2010– 2014. Nauchno- Prakticheskaya Revmatologiya = Rheumatology Science and Practice. 2016;54(3):266-70 (In Russ.)]. doi:10.14412/1995-4484-2016-266-270; Галушко ЕА, Большакова ТЮ, Виноградова ИБ и др. Структура ревматических заболеваний среди взрослого населения России по данным эпидемиологического исследования. Научно-практическая ревматология. 2009;47(1):7-11 [Galushko EA, Bolshakova TYu, Vinogradova IB, et al. Structure of rheumatic diseases among adult population of Russia according to data of an epidemiological study (preliminary results). Nauchno-Prakticheskaya Revmatologiya = Rheumatology Science and Practice. 2009;47(1):11-17 (In Russ.)]. doi:10.14412/1995-4484-2009-136; Фоломеева ОМ, Галушко ЕА, Эрдес ШФ. Распространенность ревматических заболеваний в популяциях взрослого населения России и США. Научно- практическая ревматология. 2008;46(4):4-13 [Folomeeva OM, Galushko EA, Erdes ShF. Prevalence of rheumatic diseases in adult populations of Russian Federation and USA. Nauchno- Prakticheskaya Revmatologiya = Rheumatology Science and Practice. 2008;46(4):4-13 (In Russ.)]. doi:10.14412/1995-4484-2008-529; Белов БС, Кузьмина НН, Медынцева ЛГ. Острая ревматическая лихорадка в XXI веке. Проблемы и поиск решений. Медицинский совет. 2016;(9):96-101 [Belov BS, Kuzmina NN, Medyntseva LG. Acute rheumatic fever in the xxi century: problems and search for solutions. Medical Council. 2016;(9):96-101 (In Russ.)].; Заболеваемость взрослого населения России в 2013 г. Статистические материалы. Части III, IV, VII, VIII. Москва; 2014 [Zabolevaemost' vzroslogo naseleniya Rossii v 2013 g. Statisticheskie materialy [Incidence of adult population in Russia in 2013 year]. Vol. III, IV, VII, VIII. Moscow; 2014 (In Russ.)].; Сороцкая ВН, Вайсман ДШ, Балабанова РМ. Заболеваемость острой ревматической лихорадкой и хронической ревматической болезнью сердца, динамика летальных исходов в Тульской области (1991–2011). Научно- практическая ревматология. 2013;51(3):285-9 [Sorotskaya VN, Vaisman DSh, Balabanova RM. Incidence of acute rheumatic fever and chronic rheumatic heart disease, trends in deaths in the Tula Region (1991–2011). Nauchno-Prakticheskaya Revmatologiya = Rheumatology Science and Practice. 2013;51(3):285-9 (In Russ.)]. doi:10.14412/1995-4484-2013-1503; Балабанова РМ, Кузьмина НН, Эрдес ШФ. Ревматические заболевания у детей и подростков Российской Федерации (2009–2010). Научно-практическая ревматология. 2013;51(4):446-50 [Balabanova RM, Kuzmina NN, Erdes ShF. Rheumatic diseases in children and adolescents in the Russin Federation (2009–2010) Nauchno-Prakticheskaya Revmatologiya = Rheumatology Science and Practice. 2013;51(4):446-50 (In Russ.)]. doi:10.14412/1995-4484-2013-1258; Балабанова РМ. Заболеваемость населения России острой ревматической лихорадкой и хроническими ревматическими болезнями сердца (2011–2012 гг.). Современная ревматология. 2014;8(1):14-7 [Balabanova RM. The incidence of acute rheumatic fever and chronic rheumatic heart disease in the Russian population (2011– 2012). Sovremennaya Revmatologiya = Modern Rheumatology Journal. 2014;8(1):14-7 (In Russ.)]. doi:10.14412/1996-7012-2014-1-14-17; Кузьмина НН, Медынцева ЛГ, Белов БС. Ревматическая лихорадка: полувековой опыт изучения проблемы. Размышления ревматолога. Научно-практическая ревматология. 2017;55(2):125-37 [Kuzmina NN, Medyntseva LG, Belov BS. Rheumatic fever: semicentennial experience in studying the problem. Reflections of a rheumatologist. Nauchno- Prakticheskaya Revmatologiya = Rheumatology Science and Practice. 2017;55(2):125-37 (In Russ.)]. doi:10.14412/1995-4484-2017-125-137; Кузьмина НН, Белов БС, Медынцева ЛГ. Острая ревматическая лихорадка в XXI веке – проблема, которую забывать нельзя. Научно-практическая ревматология. 2016;54(1):5-9 [Kuzmina NN, Belov BS, Medyntseva LG. Acute rheumatic fever in the 21st century: the problem that cannot be forgotten. Nauchno-Prakticheskaya Revmatologiya = Rheumatology Science and Practice. 2016;54(1):5-9 (In Russ.)]. doi:10.14412/1995-4484-2016-5-9; Кантемирова МГ, Коровина ОА, Артамонова ВА и др. Острая ревматическая лихорадка у детей: облик болезни в начале XXI века. Педиатрия. Журнал им. Г.Н. Сперанского. 2012;91(5):17-21 [Kantemirova MG, Korovina OA, Artamonova VA, et al. Acute rheumatic fever in children: the appearance of the disease in the early 21st century. Pediatriya. Zhurnal im. G.N. Speranskogo. 2012;91(5):17-21 (In Russ.)].; Шох БП, Медынцева ЛГ. Клинические проявления и исход первой атаки ревматизма у детей в 1980-е годы. Клиническая ревматология. 1993;(1):12-5 [Shoh BP, Medynceva LG. Clinical manifestations and the outcome of the first attack of rheumatism in children in the 1980s. Klinicheskaja Revmatologija = Clinical Rheumatology. 1993;(1):12-5 (In Russ.)].; Балабанова РМ, Белов БС, Эрдес ШФ. Высокая распространенность реактивного артрита в России: гипердиагностика или реальность? Научно-практическая ревматология. 2015;55(6):577-80 [Balabanova RM, Belov BS, Erdes ShF. High prevalence of reactive arthritis in russia: overdiagnosis or reality? Nauchno-Prakticheskaya Revmatologiya = Rheumatology Science and Practice. 2015;53(6):577-80 (In Russ.)]. doi:10.14412/1995-4484-2015-577-580; Балабанова РМ, Эрдес ШФ. Распространенность ревматических заболеваний в России в 2012–2013 гг. Научно-практическая ревматология. 2015;53(2):120-4 [Balabanova RM, Erdes ShF. The incidence and prevalence of rheumatic diseases in Russia in 2012–2013. Nauchno-Prakticheskaya Revmatologiya = Rheumatology Science and Practice. 2015;53(2):120-4 (In Russ.)]. doi:10.14412/1995-4484-2015-120-124; Никитинская ОА, Торопцова НВ. Состояние проблемы диагностики и лечения остеопороза в реальной клинической практике (пилотное исследование). Современная ревматология. 2014;8(2):47-51 [Nikitinskaya OA, Toroptsova NV. Current state of diagnostic and treatment of osteoporosis in reallife clinical practice (a pilot study). Sovremennaya Revmatologiya = Modern Rheumatology Journal. 2014;8(2):58-62 (In Russ.)]. doi:10.14412/1996-7012-2014-2-58-62

  13. 13
  14. 14
  15. 15
  16. 16
  17. 17
  18. 18
  19. 19
  20. 20
    Academic Journal

    Relation: Ляховченко, Д. В. Эффективность витамина D при лечении и профилактике ревматических болезней с позиции доказательной медицины [Электронный ресурс] / Д. В. Ляховченко, Е. О. Климова // Проблемы и перспективы развития современной медицины : сб. науч. ст. XIII Респ. науч.-практ. конф. с междунар. участием студентов и молодых ученых, Гомель, 6-7 мая 2021 г. : в 9 т. / Гомел. гос. мед. ун-т; редкол. : И. О. Стома [и др. ]. – Гомель : ГомГМУ, 2021. – Т. 7. – С. 177-179. – 1 электрон. опт. диск (CD-ROM). Научный руководитель: ассистент Я. М. Павленко; http://elib.gsmu.by/handle/GomSMU/8887

    Διαθεσιμότητα: http://elib.gsmu.by/handle/GomSMU/8887