Εμφανίζονται 1 - 18 Αποτελέσματα από 18 για την αναζήτηση '"ПОСТТРАНСЛЯЦИОННЫЕ МОДИФИКАЦИИ"', χρόνος αναζήτησης: 0,55δλ Περιορισμός αποτελεσμάτων
  1. 1
  2. 2
  3. 3
    Academic Journal

    Συνεισφορές: The authors thank S. Taran, Lead Expert of the Department of Analytical Methods, and M. Smolov, Head of the Laboratory of Physicochemical Methods of IBC Generium, for their help with preparing the manuscript., Авторы статьи благодарят С. Тарана, ведущего эксперта Отдела аналитических методов, и М. Смолова, начальника Лаборатории физико-химических методов «МБЦ «Генериум», за помощь в подготовке текста статьи.

    Πηγή: Fine Chemical Technologies; Vol 16, No 1 (2021); 76-87 ; Тонкие химические технологии; Vol 16, No 1 (2021); 76-87 ; 2686-7575 ; 2410-6593

    Περιγραφή αρχείου: application/pdf

    Relation: https://www.finechem-mirea.ru/jour/article/view/1688/1737; https://www.finechem-mirea.ru/jour/article/view/1688/1745; https://www.finechem-mirea.ru/jour/article/downloadSuppFile/1688/311; https://www.finechem-mirea.ru/jour/article/downloadSuppFile/1688/320; Dillon T.M., Bondarenko P.V., Rehder D.S., Pipes G.D., Kleemann G.R., Ricci M.S. Optimization of a reversed-phase high-performance liquid chromatography/mass spectrometry method for characterizing recombinant antibody heterogeneity and stability. J. Chromatogr. A. 2006;1120(1–2):112-120. https://doi.org/10.1016/j.chroma.2006.01.016; Ren D., Pipes G., Xiao G., Kleemann G.R., Bondarenko P.V., Treuheit M.J., Gadgil H.S. Reversed-phase liquid chromatography–mass spectrometry of site-specific chemical modifications in intact immunoglobulin molecules and their fragments. J. Chromatogr. A. 2008;1179(2):198–204. https://doi.org/10.1016/j.chroma.2007.11.088; Sawyer W.S., Srikumar N., Carver J., Chu P.Y., Shen A., Xu A., Williams A.J., Spiess C., Wu C., Liu Y., Tran J.C. High-throughput antibody screening from complex matrices using intact protein electrospray mass spectrometry. Proc. Natl. Acad. Sci. USA. 2020;117(18):9851–9856. https://doi.org/10.1073/pnas.1917383117; Haberger M., Leiss M., Heidenreich A-K., Pester O., Hafenmair G., Hook M., Bonnington L., Wegele H., Haindl M., Reusch D., Bulau P. Rapid characterization of biotherapeutic proteins by size-exclusion chromatography coupled to native mass spectrometry. MAbs. 2015;8(2):331–33. https://doi.org/10.1080/19420862.2015.1122150; Leney A.C., Heck A.J. Native Mass Spectrometry: What is in the Name? J. Am. Soc. Mass Spectrom. 2017;28(1):5–13. https://doi.org/10.1007/s13361-016-1545-3; Wehofsky M., Hoffmann R. Automated deconvolution and deisotoping of electrospray mass spectra. J. Mass Spectrom. 2002;37(2):223–229. https://doi.org/10.1002/jms.278; Lu J., Trnka M.J., Roh S.H., et al. Improved Peak Detection and Deconvolution of Native Electrospray Mass Spectra from Large Protein Complexes. J. Am. Soc. Mass Spectrom. 2015;26(12):21412151. https://doi.org/10.1007/s13361-015-1235-6; Wohlschlager T., Scheffler K., Forstenlehner I.C. et al. Native mass spectrometry combined with enzymatic dissection unravels glycoform heterogeneity of biopharmaceuticals. Nat. Commun. 2018;9:1713. https://doi.org/10.1038/s41467-018-04061-7; Lermyte F., Tsybin Y.O., O’Connor P.B., Loo J.A. Top or Middle? Up or Down? Toward a Standard Lexicon for Protein Top-Down and Allied Mass Spectrometry Approaches. J. Am. Soc. Mass Spectrom. 2019;30(7):1149-1157. https://doi.org/10.1007/s13361-019-02201-x; Marty M.T., Baldwin A.J., Marklund E.G., Hochberg G.R.A., Benesch J.L.P., Robinson C.V. Bayesian deconvolution of mass and ion mobility spectra: from binary interactions to polydisperse ensembles. Anal. Chem. 2015;87(8):4370–4376. https://doi.org/10.1021/acs.analchem.5b00140; Tsong Y., Dong X., Shen M. Development of statistical methods for analytical similarity assessment. J. Biopharm. Stat. 2017;27(2):197–205. https://doi.org/10.1080/10543406.2016.1272606; Chow S.-C. Challenging issues in assessing analytical similarity in biosimilar studies. Biosimilars. 2015;5:33–39. https://doi.org/10.2147/BS.S84141; Raju T.S., Jordan R.E. Galactosylation variations in marketed therapeutic antibodies. MAbs. 2012;4(3):385–391. https://doi.org/10.4161/mabs.19868; Bruce A., Hunter J., Malanson H.F. Recombinant glycosylated eculizumab and eculizumab variants: US Patent US20170073399A1. Priority 11.09.2015.; Reusch D., Tejada M.L. Fc glycans of therapeutic antibodies as critical quality attributes. Glycobiology. 2015;25(12):1325–1334. https://doi.org/10.1093/glycob/cwv065

  4. 4
  5. 5
    Academic Journal

    Πηγή: Vestnik Moskovskogo universiteta. Seriya 16. Biologiya; Том 74, № 3 (2019); 156-162 ; Вестник Московского университета. Серия 16. Биология; Том 74, № 3 (2019); 156-162 ; 0137-0952

    Περιγραφή αρχείου: application/pdf

    Relation: https://vestnik-bio-msu.elpub.ru/jour/article/view/763/473; Zhou B.-R., Jiang J., Feng H., Ghirlando R., Xiao T.S., Bai Y. Structural mechanisms of nucleosome recognition by linker histones // Mol. Cell. 2015. Vol. 59. N 4. P. 628–638.; Bednar J., Garcia-Saez I., Boopathi R., et al. Structure and dynamics of a 197 bp nucleosome in complex with linker histone H1 // Mol. Cell. 2017. Vol. 66. N 3. P. 384–397.; Gorkovets T.K., Armeev G.A., Shaitan K.V., Shaytan A.K. Joint effect of histone H1 amino acid sequence and DNA nucleotide sequence on the structure of chromatosomes: analysis by molecular modeling methods // Moscow Univ. Biol. Sci. Bull. 2018. Vol. 73. N 2. P. 82–87.; Draizen E.J., Shaytan A.K., Mariсo-Ramírez L., Talbert P.B., Landsman D., Panchenko A.R. HistoneDB 2.0: a histone database with variants— an integrated resource to explore histones and their variants // Database (Oxford). 2016. Vol. 2016: baw014. DOI:10.1093/database/baw014.; Kuzmichev A., Jenuwein T., Tempst P., Reinberg D. Different Ezh2-containing complexes target methylation of histone H1 or nucleosomal histone H3 // Mol. Cell. 2004. Vol. 14. N 2. P. 183–193.; Th’ng J.P.H., Sung R., Ye M., Hendzel M.J. H1 family histones in the nucleus. Control of binding and localization by the C-terminal domain // J. Biol. Chem. 2005. Vol. 280. N 30. P. 27809–27814.; Li H., Kaminski M.S., Li Y., et al. Mutations in linker histone genes HIST1H1 B, C, D, and E; OCT2 (POU2F2); IRF8; and ARID1A underlying the pathogenesis of follicular lymphoma // Blood. 2014. Vol. 123. N 10. P. 1487–1498.; Tatton-Brown K., Loveday C., Yost S., et al. Mutations in epigenetic regulation genes are a major cause of overgrowth with intellectual disability // Am. J. Hum. Genet. 2017. Vol. 100. N 5. P. 725–736.; Sjöblom T., Jones S., Wood L.D., et al. The consensus coding sequences of human breast and colorectal cancers // Science. 2006. Vol. 314. N 5797. P. 268–274.; Th’ng J.P., Guo X.W., Swank R.A., Crissman H.A., Bradbury E.M. Inhibition of histone phosphorylation by staurosporine leads to chromosome decondensation // J. Biol. Chem. 1994. Vol. 269. N 13. P. 9568–9573.; Clausell J., Happel N., Hale T.K., Doenecke D., Beato M. Histone H1 subtypes differentially modulate chromatin condensation without preventing ATP-dependent remodeling by SWI/ SNF or NURF // PLOS One. 2009. Vol. 4. N 10: e0007243.; Christophorou M.A., Castelo-Branco G., Halley-Stott R.P., Oliveira C.S., Loos R., Radzisheuskaya A., Mowen K.A., Bertone P., Silva J.C.R., Zernicka-Goetz M., Nielsen M.L., Gurdon J.B., Kouzarides T. Citrullination regulates pluripotency and histone H1 binding to chromatin // Nature. 2014. Vol. 507. N 7490. P. 104–108.; Dai L., Peng C., Montellier E., et al. Lysine 2-hydroxyisobutyrylation is a widely distributed active histone mark // Nat. Chem. Biol. 2014. Vol. 10. N 5. P. 365–370.; Xie Z., Zhang D., Chung D., et al. Metabolic regulation of gene expression by histone lysine β-hydroxybutyrylation // Mol. Cell. 2016. Vol. 62. N 2. P. 194–206.; Nacev B.A., Feng L., Bagert J.D., Lemiesz A.E., Gao J., Soshnev A.A., Kundra R., Schultz N., Muir T.W., Allis C.D. The expanding landscape of ‘oncohistone’ mutations in human cancers // Nature. 2019. Vol. 567. N 7749. P. 473.; Webb B., Sali A. Protein structure modeling with MODELLER // Protein Structure Prediction. Methods in Molecular Biology (Methods and Protocols), vol 1137 / Eds. D. Kihara. N.Y.: Humana Press, 2014. P. 1–15.; Schymkowitz J., Borg J., Stricher F., Nys R., Rousseau F., Serrano L. The FoldX web server: an online force field // Nucleic Acids Res. 2005. Vol. 33. Suppl. 2. P. W382–W388.; Tate J.G., Bamford S., Jubb H.C., et al. COSMIC: the catalogue of somatic mutations in cancer // Nucleic Acids Res. 2019. Vol. 47. N D1. P. D941–D947.; Adzhubei I.A., Schmidt S., Peshkin L., Ramensky V.E., Gerasimova A., Bork P., Kondrashov A.S., Sunyaev S.R. A method and server for predicting damaging missense mutations // Nature Methods. 2010. Vol. 7. N 4. P. 248–249.; UniProt: a worldwide hub of protein knowledge // Nucleic Acids Res. 2019. Vol. 47. N D1. P. D506–D515.; Margreitter C., Petrov D., Zagrovic B. Vienna-PTM web server: a toolkit for MD simulations of protein post-translational modifications // Nucleic Acids Res. 2013. Vol. 41. N W1. P. W422–W426.; Hanwell M.D., Curtis D.E., Lonie D.C., Vandermeersch T., Zurek E., Hutchison G.R. Avogadro: an advanced semantic chemical editor, visualization, and analysis platform // J. Cheminform. 2012. Vol. 4: 17.; Pettersen E.F., Goddard T.D., Huang C.C., Couch G.S., Greenblatt D.M., Meng E.C., Ferrin T.E. UCSF Chimera – a visualization system for exploratory research and analysis // J. Comput. Chem. 2004. Vol. 25. N 13. P. 1605–1612.; Bozic I., Antal T., Ohtsuki H., Carter H., Kim D., Chen S., Karchin R., Kinzler K.W., Vogelstein B., Nowak M.A. Accumulation of driver and passenger mutations during tumor progression // Proc. Natl. Acad. Sci. U.S.A. 2010. Vol. 107. N 43. P. 18545–18550.; Schwartzentruber J., Korshunov A., Liu X.Y., et al. Driver mutations in histone H3.3 and chromatin remodelling genes in paediatric glioblastoma // Nature. 2012. Vol. 482. N 7384. P. 226–231.; Kumar N.M., Walker I.O. The binding of histones H1 and H5 to chromatin in chicken erythrocyte nuclei // Nucleic Acids Res. 1980. Vol. 8. N 16. P. 3535–3552.

  6. 6
    Academic Journal

    Συνεισφορές: Выражаем благодарность всему коллективу отдела аналитических методов МБЦ «ГЕНЕРИУМ» за советы и поддержку в работе над проектом. Научному сотруднику М.А. Смолову за разработку методов анализа гликанов и важные замечания к статье. Исследование проводилось без спонсорской поддержки.

    Πηγή: Biological Products. Prevention, Diagnosis, Treatment; Том 19, № 1 (2019); 39-49 ; БИОпрепараты. Профилактика, диагностика, лечение; Том 19, № 1 (2019); 39-49 ; 2619-1156 ; 2221-996X ; 10.30895/2221-996X-2019-19-1

    Περιγραφή αρχείου: application/pdf

    Relation: https://www.biopreparations.ru/jour/article/view/207/164; Guzzetta AW, Basa LJ, Hancock WS, Keyt BA, Bennett WF. Identification of carbohydrate structures in glycoprotein peptide maps by the use of LC/MS with selected ion extraction with special reference to tissue plasminogen activator and a glycosylation variant produced by site directed mutagenesis. Anal Chem. 1993;65(21):2953–62.; Spellman MW, Basa LJ, Leonard CK, Chakel JA, O’ConnorJV, Wilson S, van Halbeek H. Carbohydrate structures of human tissue plasminogen activator expressed in Chinese hamster ovary cells. J Biol Chem. 1989;264(24):14100–11.; Harris RJ, Leonard CK, Guzzetta AW, Spellman MW. Tissue plasminogen activator has an O-linked fucose attached to threonine-61 in the epidermal growth factor domain. Biochemistry. 1991;30(9):2311–4.; Parekh RB, Dwek RA, Thomas JR, Opdenakker G, Rademacher TW, Wittwer AJ, et al. Cell-type-specific and site-specific N-glycosylation of type I and type II human tissue plasminogen activator. Biochemistry. 1989;28(19):7644–62.; Wittwer AJ, Howard SC, Carr LS, Harakas NK, Feder J, Parekh RB, et al. Effects of N-glycosylation on in vitro activity of Bowes melanoma and human colon fibroblast derived tissue plasminogen activator. Biochemistry. 1989;28(19):7662–9.; Berg DT, Burck PJ, Berg DH, Grinnell BW. Kringle glycosylation in a modified human tissue plasminogen activator improves functional properties. Blood. 1993;81(5):1312–22.; Cole ES, Nichols EH, Poisson L, Harnois ML, Livingston DJ. In vivo clearance of tissue plasminogen activator: The complex role of sites of glycosylation and level of sialylation. Fibrinilysis. 1993;7(1):15–22. https://doi.org/10.1016/0268-9499(93)90050-6; Chloupek RC, Harris RJ, Leonard CK, Keck RG, Keyt BA, Spellman MW, et al. Study of the primary structure of recombinant tissue plasminogen activator by reversedphase high-performance liquid chromatographic tryptic mapping. J Chromatogr. 1989;463(2):375–96.; Kim PY, Tieu LD, Stafford AR, Fredenburgh JC, Weitz JI. A high affinity interaction of plasminogen with fibrin is not essential for efficient activation by tissue-type plasminogen activator. J Biol Chem. 2012;287(7):4652–61. https://doi.org/10.1074/jbc.M111.317719; Björquist P, Brohlin M, Ehnebom J, Ericsson M, Kristansen C, Pohl G, Deinum J. Plasminogen activator inhibitor type-1 interacts exclusively with the proteinase domain of tissue plasminogen activator. Biochim Biophys Acta. 1994;1209(2):191–202.; https://www.biopreparations.ru/jour/article/view/207

  7. 7
  8. 8
  9. 9
  10. 10
  11. 11
  12. 12
  13. 13
  14. 14
  15. 15
  16. 16
  17. 17
  18. 18