Εμφανίζονται 1 - 20 Αποτελέσματα από 52 για την αναζήτηση '"ПОСТКОНДИЦИОНИРОВАНИЕ"', χρόνος αναζήτησης: 0,98δλ Περιορισμός αποτελεσμάτων
  1. 1
    Academic Journal

    Πηγή: Fundamental and applied research for key propriety areas of bioecology and biotechnology; 151-154 ; Фундаментальные и прикладные исследования по приоритетным направлениям биоэкологии и биотехнологии; 151-154

    Περιγραφή αρχείου: text/html

    Relation: info:eu-repo/semantics/altIdentifier/isbn/978-5-907688-37-7; https://phsreda.com/e-articles/10473/Action10473-105499.pdf; Ветровой О.В. Роль HIF1-зависимой регуляции пентозофосфатного пути в обеспечении реакций мозга на гипоксию: дис. . канд. биол. наук / О.В. Ветровой. – СПб.: СПбГУ, 2018.; Федоров Д.А. Эффекты тяжелой гипобарической гипоксии и ингибирования индуцируемого гипоксией фактора HIF-1 на маркеры повреждения сердечной и скелетных мышц крыс / Д.А. Федоров, М.Ю. Фролова, И.Е. Красовская, Н.В. Кулева // Биофизика. – 2019. –Т. 64. №5. – С. 999–1002. – DOI:10.1134/S0006302919050235. – EDN: WIYTQO; Fedorov D.A. The Effects of Severe Hypobaric Hypoxia and Inhibition of Hypoxia-Inducible Factor-1 (HIF-1) on Biomarkers of Cardiac and Skeletal Muscle Injury in Rats / D.A. Fedorov, M.Y. Frolova, I.E. Krasovskaya, N.V. Kuleva // Biophysics. – 2019. – Vol. 64. №5. – P. 808–811. – DOI:10.1134/S000635091905004X. – EDN: ISWSCY; Tarazona V., Figueiredo S., Hamada S. et al. 2021. Admission serum myoglobin and the development of acute kidney injury after major trauma. Ann. Intensive Care 11, 140. – https://doi.org/10.1186/s13613-021-00924-3; https://phsreda.com/article/105499/discussion_platform

  2. 2
    Academic Journal

    Συνεισφορές: Статья подготовлена при поддержке гранта РФФИ № 21-515-53003. Раздел, посвященный PI3, оформлен в рамках государственных назначений AAAA-A15-115120910024-0. Работа выполнена на оборудовании Центра коллективного пользования «Медицинская геномика».

    Πηγή: Bulletin of Siberian Medicine; Том 20, № 4 (2021); 6-10 ; Бюллетень сибирской медицины; Том 20, № 4 (2021); 6-10 ; 1819-3684 ; 1682-0363 ; 10.20538/1682-0363-2021-20-4

    Περιγραφή αρχείου: application/pdf

    Relation: https://bulletin.tomsk.ru/jour/article/view/4573/3095; Vaidya S.R., Devarapally S.R., Arora S. Infarct related artery only versus complete revascularization in ST-segment elevation myocardial infarction and multi vessel disease: a meta-analysis. Cardiovasc. Diagn. Ther. 2017; 7 (1): 16–26. DOI:10.21037/cdt.2016.08.06.; Zhou Y., Chen S., Zhu X., Gui J., Abusaada K. Prior beta blockers use is independently associated with increased in patient mortality in patients presenting with acute myocardial infarction. Int. J. Cardiol. 2017; 243: 81–85. DOI:10.1016/j.ijcard.2017.03.004.; McCartney P.J., Berry C. Redefining successful primary PCI. Eur. Heart J. Cardiovasc. Imaging. 2019; 20 (2): 133–135. DOI:10.1093/ehjci/jey159.; Ndrepepa G. Improving myocardial injury, infarct size, and myocardial salvage in the era of primary PCI for STEMI. Coron. Artery Dis. 2015; 26 (4): 341–355. DOI:10.1097/mca.0000000000000220.; Маслов Л.Н., Барбараш О.Л. Фармакологические подходы к ограничению размера инфаркта миокарда у пациентов с острым инфарктом миокарда. Экспериментальная и клиническая фармакология. 2018; 81 (3): 75–82. DOI:10.30906/0869-2092-2018-81-3-34-41.; Kerendi F., Kin H., Halkos M.E., Jiang R., Zatta A.J., Zhao Z.Q., Guyton R.A., Vinten-Johansen J. Remote postconditioning. Brief renal ischemia and reperfusion applied before coronary artery reperfusion reduces myocardial infarct size via endogenous activation of adenosine receptors. Basic Res. Cardiol. 2005; 100 (5): 404–412. DOI:10.1007/s00395-005-0539-2.; Heusch G. Molecular basis of cardioprotection: signal transduction in ischemic pre-, post-, and remote conditioning. Circ. Res. 2015; 116 (4): 674–699. DOI:10.1161/circresaha.116.305348.; Maslov L.N., Naryzhnaya N.V., Tsibulnikov S.Yu., Kolar F., Zhang Y., Wang H., Gusakova A.M., Lishmanov Yu.B. Role of endogenous opioid peptides in the infarct size-limiting effect of adaptation to chronic continuous hypoxia. Life Sci. 2013; 93 (9–11): 373–379. DOI:10.1016/j.lfs.2013.07.018.; Maslov L.N., Lishmanov Yu.B., Oeltgen P.R., Barzakh E.I., Krylatov A.V., Govindaswami M., Brown S.A. Activation of peripheral δ2 opioid receptors increases cardiac tolerance to ischemia/reperfusion injury: Involvement of protein kinase C, NO-synthase, KATP channels and the autonomic nervous system. Life Sci. 2009; 84 (19–20): 657–663. DOI:10.1016/j.lfs.2009.02.016.; Fettiplace M.R., Kowal K., Ripper R., Young A., Lis K., Rubinstein I., Bonini M., Minshall R., Weinberg G. Insulin signaling in bupivacaine-induced cardiac toxicity: sensitization during recovery and potentiation by lipid emulsion. Anesthesiology. 2016; 124 (2): 428–442. DOI:10.1097/aln.0000000000000974.; Cohen M.V., Downey J.M. Signalling pathways and mechanisms of protection in pre- and postconditioning: historical perspective and lessons for the future. Br. J. Pharmacol. 2015; 172 (8): 1913–3192. DOI:10.1111/bph.12903.; Hausenloy D.J., Yellon D.M. Ischaemic conditioning and reperfusion injury. Nat. Rev. Cardiol. 2016; 13 (4): 193–209. DOI:10.1038/nrcardio.2016.5.; Breivik L., Helgeland E., Aarnes E.K., Mrdalj J., Jonassen A.K. Remote postconditioning by humoral factors in effluent from ischemic preconditioned rat hearts is mediated via PI3K/ Akt-dependent cell-survival signaling at reperfusion. Basic Res. Cardiol. 2011; 106 (1): 135–145. DOI:10.1007/s00395-010-0133-0.; Liang D., He X.B., Wang Z., Li C., Gao B.Y., Wu J.F., Bai Y.L. Remote limb ischemic postconditioning promotes motor function recovery in a rat model of ischemic stroke via the up-regulation of endogenous tissue kallikrein. CNS Neurosci. Ther. 2018; 24 (6): 519–527. DOI:10.1111/cns.12813.; https://bulletin.tomsk.ru/jour/article/view/4573

  3. 3
    Academic Journal
  4. 4
    Academic Journal

    Πηγή: Siberian Journal of Clinical and Experimental Medicine; Том 30, № 2 (2015); 36-39 ; Сибирский журнал клинической и экспериментальной медицины; Том 30, № 2 (2015); 36-39 ; 2713-265X ; 2713-2927 ; 10.29001/2073-8552-2015-30-2

    Περιγραφή αρχείου: application/pdf

    Relation: https://www.sibjcem.ru/jour/article/view/164/165; Марков В.А., Рябов В.В., Максимов И.В. и др. Вчера, сегодня, завтра в диагностики и лечении острого инфаркта миокарда // Сибирский медицинский журнал (Томск). - 2011. -Т. 26, № 2, вып. 1. - С. 8-14.; Метелица В.И. Справочник по клинической фармакологии сердечно-сосудистых лекарственных средств. - М.: Бином, 2002. - 926 с.; Николаева Н.В., Федоров В.В., Привалова В.Ю. и др. Трудовой прогноз больных инфарктом миокарда // Кардиология. - 1997. - Т. 37, № 3. - С. 73.; Сыркин А.С. Инфаркт миокарда. - М.: Медицинское информационное агентство, 2003. - 466 с.; Bolli R., Triana J.F., Jeroudi M.O. Prolonged impairment of coronary vasodilation after reversible ischemia. Evidence for microvascular “stunning” // Circ. Res. - 1990. - Vol. 67, No. 2. - P. 332-343.; Chang W.L., Lee S.S., Su M.J. Attenuation of post-ischemia reperfusion injury by thaliporphine and morphine in rat hearts // J. Biomed. Sci. - 2005. - Vol. 12, No. 4. - P. 611-619.; Chen Z., Li T., Zhang B. Morphine postconditioning protects against reperfusion injury in the isolated rat hearts // J. Surg. Res. - 2008. - Vol. 145, No. 2. - P. 287-294.; Forster K., Kuno A., Solenkova N. et al. The S-opioid receptor agonist DADLE at reperfusion protects the heart through activation of pro-survival kinases via EGF receptor transactivation // Am. J. Physiol. Heart Circ. Physiol. - 2007. -Vol. 293, No. 3. - P. H1604-H1608.; Fuardo M., Lemoine S., Lo Coco C. et al. [D-Ala2,D-Leu5]-enkephalin (DADLE) and morphine-induced postconditioning by inhibition of mitochondrial permeability transition pore, in human myocardium // Exp. Biol. Med (Maywood). - 2013. -Vol. 238, No. 4. - P. 426-432.; Gong Z.X., Ran K., Chang Y.T. et al. Effect of morphine postconditioning on myocardial ischemia-reperfusion injury in rabbits // J. Zhejiang Univ. Med. Sci. - 2009. - Vol. 38, No. 5. -P. 521-524.; Gross E.R., Hsu A.K., Gross G.J. Opioid-induced cardioprotection occurs via glycogen synthase kinase beta inhibition during reperfusion in intact rat hearts // Circ. Res. - 2004. - Vol. 94, No. 7. - P. 960-966.; Gross E.R., Hsu A.K., Gross G.J. Diabetes abolishes morphine-induced cardioprotection via multiple pathways upstream of glycogen synthase kinase-3ß // Diabetes. - 2007. - Vol. 56, No. 1. - P. 127-136.; Gross E.R., Hsu A.K., Gross G.J. GSK3ß inhibition and KATP channel opening mediate acute opioid-induced cardioprotection at reperfusion // Basic Res. Cardiol. - 2007. -Vol. 102, No. 4. - P 341-349.; Huhn R., Heinen A., Weber N.C. et al. Ischaemic and morphine-induced post-conditioning: impact of mKCa channels // Br. J. Anaesth. - 2010. - Vol. 105, No. 5. - P. 589-595.; Jang Y., Xi J., Wang H. et al. Postconditioning prevents reperfusion injury by activating S-opioid receptors // Anesthesiology. - 2008. - Vol. 108, No. 2. - P. 243-250.; Kim J.H., Chun K.J., Park Y.H. et al. Morphine-induced postconditioning modulates mitochondrial permeability transition pore opening via delta-1 opioid receptors activation in isolated rat hearts // Korean J. Anesthesiol. - 2011. - Vol. 61, No. 1. - P. 69-74.; Mourouzis I., Saranteas T., Perimenis P. et al. Morphine administration at reperfusion fails to improve postischaemic cardiac function but limits myocardial injury probably via heat-shock protein 27 phosphorylation // Eur. J. Anaesthesiol. - 2009. - Vol. 26, No. 7. - P. 572-581.; Peart J.N., Gross E.R., Reichelt M.E. et al. Activation of kappaopioid receptors at reperfusion affords cardioprotection in both rat and mouse hearts // Basic Res. Cardiol. - 2008. - Vol. 103, No. 5. - P. 454-463.; Tsutsumi Y.M., Yokoyama T., Horikawa Y. et al. Reactive oxygen species trigger ischemic and pharmacological postconditioning: in vivo and in vitro characterization // Life Sci. - 2007. -Vol. 81, No. 15. - P. 1223-1227.; Zhang R., Shen L., Xie Y. et al. // J. Cardiothorac. Surg. - 2013. -Vol. 8. - P. 76.; Zhao Z.Q., Corvera J.S., Halkos M.E. et al. Inhibition of myocardial injury by ischemic postconditioning during reperfusion: comparison with ischemic preconditioning // Am. J. Physiol. Heart Circ. Physiol. - 2003. - Vol. 285, No. 2. - P. H579-H588.; https://www.sibjcem.ru/jour/article/view/164

  5. 5
    Academic Journal

    Πηγή: Complex Issues of Cardiovascular Diseases; № 4 (2016); 44-51 ; Комплексные проблемы сердечно-сосудистых заболеваний; № 4 (2016); 44-51 ; 2587-9537 ; 2306-1278 ; 10.17802/2306-1278-2016-4

    Περιγραφή αρχείου: application/pdf

    Relation: https://www.nii-kpssz.com/jour/article/view/235/211; Иоселиани Д. Г., Филатов А. А., Роган С. В. и др. Восстановление кровотока в инфарктответственной венечной артерии при остром инфаркте миокарда: эффективно или только эффектно? Международный журнал интервенционной кардиоангиологии. 2003; 1: 33. Ioseliani D. G., Filatov A. A., Rogan S. V. i dr. Vosstanovlenie krovotoka v infarktotvetstvennoj venechnoj arterii pri ostrom infarkte miokarda: jeffektivno ili tol’ko jeffektno? Mezhdunarodnyj zhurnal intervencionnoj kardioangiologii. 2003; 1: 33.; Биленко М. В. Теоретические и экспериментальные обоснования применения антиоксидантной терапии для профилактики острых ишемических повреждений в органах. М.; 1982. Bilenko M. V. Teoreticheskie i jeksperimental’nye obosnovanija primenenija antioksidantnoj terapii dlja profilaktiki ostryh ishemicheskih povrezhdenij v organah. Moscow; 1982.; Шахнович Р. М. Оптимизация энергетического метаболизма у больных ишемической болезнью сердца. Русский Медицинский Журнал. 2001; 15: 14–19. Shahnovich R. M. Optimizacija jenergeticheskogo metabolizma u bol’nyh ishemicheskoj bolezn’ju serdca. Russkij Medicinskij Zhurnal. 2001; 15: 14–19.; Kloner R. A., Ganote C. E., Jennings R. B. The no-reflow phenomenon after temporary coronary occlusion in the dog. J. Clin. Invest. 1974; 54: 1496–1508.; Еременко А. А., Колпаков П. Е., Бабаев М. А., Ревуненков Г. В., Фоминых М. В. Применение левосимендана у кардиохирургических больных с хронической сердечной недостаточностью. Анестезиология и реаниматология. 2010; 2: 24–27. Eremenko A. A., Kolpakov P. E., Babaev M. A., Revunenkov G. V., Fominyh M. V. Primenenie levosimendana u kardiohirurgicheskih bol’nyh s hronicheskoj serdechnoj nedostatochnost’ju. Anesteziologija i reanimatologija. 2010; 2: 24–27.; Shahbudin H., Rahimtoola M. B. Сoncept and evaluation of hibernating myocardium. J. Annual. Review. of Medicine. 1999; 50: 75–86.; Opie L. H. Cardiac metabolism in ischemic heart disease. Arch. Mal. Coeur. Vaiss. 1999; 92 (12): 1755–1760.; Pantely G. A., Bristow J. D. Hibernating myocardium: a hypometabolic state for energy conservation. Basic. Res. Cardiol. 1995; 90 (1): 23–25.; Hochachka P. W. Metabolic arrest. Intensive. Care. Med. 1986; 12 (3): 127–133.; Dawn B., Xuan Y. T., Qiu Y., Takano H., Tang X. L., Ping P. et al. Bifunctional role of protein tyrosine kinases in late preconditioning against myocardial stunning in conscious rabbits. Circ. Res. 1999; 85 (12): 1154–1163.; Slezak J., Tribulova N., Okruhlicova L., Dhingra R., Bajaj A., Freed D. et al. Hibernating myocardium: pathophysiology, diagnosis, and treatment. Can. J. Physiol. Pharmacol. 2009; 87 (4): 252–265. DOI:10.1139/Y09-011.; Murry C. E., Jenning R. D., Reimer K. A. Preconditioning with ischemia: a delay of lethal cell injury in ischemic myocardium. Circulation. 1986; 74 (5): 1122–1136.; Kloner R. A., Jennings R. B. Consequences of brief ischemia: stunning, preconditioning, and their clinical implications: Part 1. Circulation. 2001; 104 (24): 2981–2989.; Kharbanda R. K. Cardiac conditioning: a review of evolving strategies to reduce ischemia-reperfusion injury. Heart. 2010; 96: 1179–1186.; Шляхто Е. В., Галагудзе М. М., Нифонтов Е. М., Щербак Н. С. Острое ишемическое повреждение и защита миокарда. Руководство по атеросклерозу и ишемической болезни сердца (под ред. акад. Е. И. Чазова и др.). М.; 2007; 552–573. Shlyakhto E. V., Galagudze M. M., Nifontov E. M., Shcherbak N. S. Sharp ischemic injury and protection of a myocardium. The guide to atherosclerosis and coronary heart disease (under the editorship of the academician E. I. Chazov et al.). Moscow; 2007; 552–573. [In Russ.].; Van Vunren D., Lochner A. Ischemic preconditioning: from bench to bedside. Cardiovasc. J. Afr. 2008; 19 (6): 311– 320.; Havsenloy D. J., Ong S. B., Yellon D. M. The mitochondrial permeability transition pore as a target for preconditioning and postconditioning. Basic. Res. Cardiol. 2009; 104 (2): 189– 202.; Явелов И. С. Клиническая эффективность сенситизатора кальция – представителя нового класса препаратов с положительным инотропным действием при сердечной недостаточности и инфаркте миокарда. Сердечная недостаточность. 2005; 1: 33–45. Javelov I. S. Klinicheskaja jeffektivnost’ sensitizatora kal’cija – predstavitelja novogo klassa preparatov s polozhitel’nym inotropnym dejstviem pri serdechnoj nedostatochnosti i infarkte miokarda. Serdechnaja nedostatochnost’. 2005; 1: 33–45.; Моисеев В. С. Острая сердечная недостаточность. Новые возможности лечения с применением сенситизатора кальция левосимендана. М.; 2004. Moiseev V. S. Ostraja serdechnaja nedostatochnost’. Novye vozmozhnosti lechenija s primeneniem sensitizatora kal’cija levosimendana. Moscow; 2004.; Белоусов Ю. Б., Белоусов Д. Ю., Григорьев В. Ю., Бекетов А. С., Попова Н. Ю., Бойко Е. А. и др. Фармакоэкономический анализ применения левосимендана у больных с тяжелой декомпенсированной хронической сердечной недостаточностью. Сердечная недостаточность. 2006; 1: 32–38. Belousov Ju. B., Belousov D. Ju., Grigor’ev V. Ju., Beketov A. S., Popova N. Ju., Bojko E. A. i dr. Farmakojekonomicheskij analiz primenenija levosimendana u bol’nyh s tjazheloj dekompensirovannoj hronicheskoj serdechnoj nedostatochnost’ju. Serdechnaja nedostatochnost’. 2006; 1: 32–38.; Papp Z., Csapó K., Pollesello P., Haikala H., Edes I. Pharmacological mechanisms contributing to the clinical efficacy of levosimendan. Cardiovasc. Drug. Rev. 2005; 23 (1): 71–98.; Malmberg M., Vähäsilta T., Saraste S., Koskenvuo J. W., Pärkkä J. P., Leino K. Intracoronary Levosimendan during Ischemia Prevents Myocardial Apoptosis. Frontiers in Physiology. 2012; 3: 17. DOI:10.3389/fphys.2012.00017.; Григорьев Е. В., Торопова Я. Г., Плотников Г. П., Крутицкий С. С., Шукевич Д. Л., Салмин В. В. и др. Фармакологическая кардиопротекция при реперфузии изолированного сердца. Анестезиология и реаниматология. 2015; 2: 12–16. Grigor’ev E. V., Toropova Ja. G., Plotnikov G. P., Krutickij S. S., Shukevich D. L., Salmin V. V. i dr. Farmakologicheskaja kardioprotekcija pri reperfuzii izolirovannogo serdca. Anesteziologija i reanimatologija. 2015; 2: 12–16.; Metoprolol in Acute Myocardial Infarction (MIAMI): a randomised placebo-controlled international trial: the MIAMI Trial Research Group. Eur. Heart. J. 1985; 6: 199–226.; Ibanez B., Prat-González S., Speidl W. S., Vilahur G., Pinero A., Cimmino G. et al. Early metoprolol administration before coronary reperfusion results in increased myocardial salvage: analysis of ischemic myocardium at risk using cardiac magnetic resonance. Circulation. 2007; 115: 2909–2916.; Ibanez B., Cimmino G., Prat-González S., Vilahur G., Hutter R., García M. J. et al. The cardioprotection granted by metoprolol is restricted to its administration prior to coronary reperfusion. Int. J. Cardiol. 2011; 147: 428–432.; Ibanez B., Macaya C., Sánchez-Brunete V., Pizarro G., Fernández-Friera L., Mateos A. et al. Effect of early metoprolol on infarct size in ST-segment-elevation myocardial infarction patients undergoing primary percutaneous coronary intervention: the Effect of Metoprolol in Cardioprotection during an Acute Myocardial Infarction (METOCARD-CNIC) trial. Circulation. 2013; 128 (14): 1495–1503. DOI:10.1161/CIRCULATIONAHA. 113.003653.; Kim M. J., Jeon D. S., Gwon H. C., Kim S. J., Chang K., Kim H. S. et al. Current statin usage for patients with acute coronary syndrome undergoing percutaneous coronary intervention: multicenter survey in Korea. Clin. Cardiol. 2012; 35: 700–706. DOI:10.1002/clc.22038.; Jeong H. C., Ahn Y., Hong Y. J. Statin therapy to reduce stent thrombosis in acute myocardial infarction patients with elevated high-sensitivity C-reactive protein. Int. J. Cardiol. 2013; 167: 1848–1853.; Ozacmak V. H., Sayan H., Igdem A. A., Cetin A., Ozacmak I. D. Attenuation of contractile dysfunction by atorvastatin after intestinal is ischemia reperfusion injury in rats. Eur. J. Pharmacol. 2007; 562: 138–147. DOI:10.1016/j.ejphar.2007.01.061.; Liu Y., Su Q., Li L. Efficacy of short-term high-dose atorvastatin pretreatment in patients with acute coronary syndrome undergoing percutaneous coronary intervention: a meta- analysis of nine randomized controlled trials. Clin. Cardiol. 2013; 36: 41–48.; Peters S. A., Palmer M. K., Grobbee D. E. C-reactive protein lowering with Rosuvastatin in the METEOR study. J. Intern. Med. 2010; 268: 155–161.; Chen M., Li H., Wang Y. Protection by atorvastatin pretreatment in patients undergoing primary percutaneous coronary intervention is associated with the lower levels of oxygen free radicals. J. Cardiovasc. Pharmacol. 2013; 62: 320–324.; Fangyong J., Jin Yang., Linchao Zhang., Rongshan Li., Liuan Zhuo., Liping Sun. et al. Rosuvastatin Reduces Ishemia- Reperfusion Injury in Patients With Acute Coronary Syndrome Treated With Percutaneous Coronary Intervention. Clin. Cardiol. 2014; 37 (9): 530–535.; Pool P. E., Spann J. F. Jr., Buccino R. A., Sonnenblick E. H., Braunwald E. Myocardial high- energy phosphate stores in cardiac hypertrophy and heart failure. Circ. Res. 1967; 21: 365–375.; Parratt J. R., Marshall R. J. The response of isolated cardiac muscle to acute anoxia: protective effect of adenosine triphosphate and creatine phosphate. J. Pharm. Pharmacol. 1974; 26: 427–433.; Woo Y. J., Grand T. J., Zentko S., Cohen J. E., Hsu V., Atluri P. et al. Creatine phosphate administration preserves myocardial function in a model of off-pump coronary revascularization. J. Cardiovasc. Surg. 2005; 46: 297–305.; Camilova U. K., Katsenovich R. A., Kostco S. Z. Combined use of creatine phosphate and nifedipine for treatment of patients with acute myocardial infarction. Curr. Ther. Res. 1991; 50: 591–598.; Иоселиани Д. Г., Колединский А. Г., Кучкина Н. В. Ограничивает ли внутрикоронарное введение фосфокреатина реперфузионное повреждение миокарда при ангиопластике инфарктответственной коронарной артерии в остром периоде инфаркта миокарда? Международный журнал интервенционной кардиологии. 2006; 11: 10–16. Ioseliani D. G., Koledinskij A. G., Kuchkina N. V. Ogranichivaet li vnutrikoronarnoe vvedenie fosfokreatina reperfuzionnoe povrezhdenie miokarda pri angioplastike infarktotvetstvennoj koronarnoj arterii v ostrom periode infarkta miokarda? Mezhdunarodnyj zhurnal intervencionnoj kardiologii. 2006; 11: 10–16.; Krebs H. A., Kornberg H. L., Burnon K. A survey of the energy transfor mations in living matter. Ergeb. Physiol. 1957; 49: 212–298. DOI: http://dx.doi.org/10. 1007/BF02269485. PMID: 13609573.; He W., Miao F. J., Lin D. C., Schwandner R. T., Wang Z., Gao J. et al. Citric acid cycle intermediates as ligands for or phan G proteincoupled receptors. Nature. 2004; 429 (6988): 188–193.; Colucci W. S., Braunwald E., Patophysiology of heart failure. Braunwald’s heart disease. A textbook of cardiovascular medicine, 7th ed. Elsevier Saunders, Philadelphia. 2005; 509– 538.; Афанасьев В. В. Клиническая фармакология реамберина (очерк). СПб.; 2005. Afanas’ev V. V. Klinicheskaja farmakologija reamberina (ocherk). Sankt-Peterburg; 2005.; Кондрашова М. Н. Аппаратура и порядок работы при полярографическом измерении дыхания митохондрий. Руководство по изучению биологического окисления полярографическим методом. М.; 1973. Kondrashova M. N. Apparatura i porjadok raboty pri poljarograficheskom izmerenii dyhanija mitohondrij. Rukovodstvo po izucheniju biologicheskogo okislenija poljarograficheskim metodom. Moscow; 1973.; Зарубина И. В. Современные представления о патогенезе гипоксии и ее фармакологической коррекции. Обзоры по клин. фармакологии и лекарств. терапии. 2011; 9 (3): 31–48. Zarubina I. V. Sovremennye predstavlenija o patogeneze gipoksii i ee farmakologicheskoj korrekcii. Obzory po klin. farmakologii i lekarstv. terapii. 2011; 9 (3): 31– 48.; Оболенский С. В. Реамберин – новое средство для инфузионной терапии в практике медицины критических состояний. Методические рекомендации по медицинским аспектам применения нового средства инфузионной терапии 1,5 % раствора реамберина. СПб.; 2002. Obolenskij S. V. Reamberin – novoe sredstvo dlja infuzionnoj terapii v praktike mediciny kriticheskih sostojanij. Metodicheskie rekomendacii po medicinskim aspektam primenenija novogo sredstva infuzionnoj terapii 1,5 % rastvora reamberina. Sankt-Peterburg; 2002.; Лазарев В. В., Ермолаева К. Р., Кочкин В. С. и др. Влияние сукцинатсодержащего инфузионного раствора на функцию клеточных структур в периоперационном периоде у детей. Общая реаниматология. 2015; 1: 33–38. Lazarev V. V., Ermolaeva K. R., Kochkin V. S. i dr. Vlijanie sukcinatsoderzhashhego infuzionnogo rastvora na funkciju kletochnyh struktur v perioperacionnom periode u detej. Obshhaja reanimatologija. 2015; 1: 33–38.; Сидоренко Г. И. Фармакологическая защита миокарда реамберином при коронарном шунтировании у пациентов с постинфарктной стенокардией. Терапевтический архив. 2011, 9: 35–40. Sidorenko G. I. Pharmacological protection of a myocardium reamberiny at coronary shunting at patients with postinfarction stenocardia. Therapeutic. archive. 2011, 9: 35–40. [In Russ.].

  6. 6
    Academic Journal
  7. 7
  8. 8
    Academic Journal

    Συνεισφορές: Российский научный фонд

    Πηγή: Complex Issues of Cardiovascular Diseases; № 3 (2015); 37-46 ; Комплексные проблемы сердечно-сосудистых заболеваний; № 3 (2015); 37-46 ; 2587-9537 ; 2306-1278 ; 10.17802/2306-1278-2015-3

    Περιγραφή αρχείου: application/pdf

    Relation: https://www.nii-kpssz.com/jour/article/view/138/132; Zhao Z. Q., Corvera J. S., Halkos M. E., Kerendi F., Wang N. P., Guyton R. A. et al. Inhibition of myocardial injury by ischemic postconditioning during reperfusion: comparison with ischemic preconditioning. Am. J. Physiol. Heart. Circ. Physiol. 2003; 285 (2): H579–588.; Simes R. J., O’Connell R. L., Aylward P. E., Varshavsky S., Diaz R., Wilcox R. G. et al. HERO-2 Investigators. Unexplained international differences in clinical outcomes after acute myocardial infarction and fibrinolytic therapy: lessons from the Hirulog and Early Reperfusion or Occlusion (HERO)-2 trial. Am. Heart J. 2010; 159 (6): 988–997.; Antman E. M., Morrow D. A., McCabe C. H., Murphy S. A., Ruda M., Sadowski Z. et al. ExTRACT-TIMI 25 Investigators. Enoxaparin versus unfractionated heparin with fibrinolysis for ST-elevation myocardial infarction. N. Engl. J. Med. 2006; 354 (14): 1477–1488.; Soejima H., Ogawa H., Sakamoto T., Miyamoto S., Kajiwara I., Kojima S. et al. Increased serum matrix metalloproteinase-1 concentration predicts advanced left ventricular remodeling in patients with acute myocardial infarction. Circ. J. 2003, 67 (4): 301–304.; Iliodromitis E. K., Zoga A., Vrettou A., Andreadou I., Paraskevaidis I. A., Kaklamanis L. et al. The effectiveness of postconditioning and preconditioning on infarct size in hypercholesterolemic and normal anesthetized rabbits. Atherosclerosis. 2006; 188 (2): 356–362.; Iliodromitis E. K., Andreadou I., Prokovas E., Zoga A., Farmakis D., Fotopoulou T. et al. Simvastatin in contrast to postconditioning reduces infarct size in hyperlipidemic rabbits: possible role of oxidative/nitrosative stress attenuation. Basic. Res. Cardiol. 2010; 105 (2): 193–203.; Donato M., D’Annunzio V., Berg G., Gonzalez G., Schreier L., Morales C. et al. Ischemic postconditioning reduces infarct size by activation of A1 receptors and K+ ATP channels in both normal and hypercholesterolemic rabbits. J. Cardiovasc. Pharmacol. 2007; 49 (5): 287–292.; Zhao J. L., Yang Y. J., You S. J., Cui C. J., Gao R. L. Different effects of postconditioning on myocardial no-reflow in the normal and hypercholesterolemic mini-swines. Microvasc Res. 2007; 73 (2): 137–142.; Heusch G., Skyschally A., Schulz R. The in-situ pig heart with regional ischemia/reperfusion – Ready for translation. J. mol. Cell. Cardiol. 2011; 50 (6): 951–963.; Huang C., Li R., Zeng Q., Ding Y., Zou Y., Mao X. et al. Effect of minocycline postconditioning and ischemic postconditioning on myocardial ischemia-reperfusion injury in atherosclerosis rabbits. J. Huazhong Univ. Sci. Technology Med. Sci. 2012; 32 (4): 524–529.; Li X., Zhao H., Wu Y., Zhang S., Zhao X., Zhang Y. et al. Up-regulation of hypoxia-inducible factor-1α enhanced the cardioprotective effects of ischemic postconditioning in hyperlipidemic rats. Acta Biochim. Biophys. Sin. (Shanghai). 2014; 46 (2): 112–118.; Wu N., Zhang X., Guan Y., Shu W., Jia P., Jia D. Hypercholesterolemia abrogates the cardioprotection of ischemic postconditioning in isolated rat heart: roles of glycogen synthase kinase-3β and the mitochondrial permeability transition pore. Cell. Biochem. Biophys. 2014; 69 (1): 123–130.; Przyklenk K., Maynard M., Darling C. E., Whittaker P. Aging mouse hearts are refractory to infarct size reduction with post-conditioning. J. Am. Coll. Cardiol. 2008; 51 (14): 1393–1398.; Boengler K., Buechert A., Heinen Y., Roeskes C., Hilfiker-Kleiner D., Heusch G. et al. Cardioprotection by ischemic postconditioning is lost in aged and STAT3-deficient mice. Circ. Res. 2008; 102 (1): 131–135.; Vessey D. A., Kelley M., Li L., Huang Y. Sphingosine protects aging hearts from ischemia/reperfusion injury: Superiority to sphingosine 1-phosphate and ischemic pre- and post-conditioning. Oxid. Med. Cell. Longev. 2009; 2 (3): 146–151.; Somers S. J., Lacerda L., Opie L., Lecour S. Age, genetic characteristics and number of cycles are critical factors to consider for successful protection of the murine heart with postconditioning. Physiol. Res. 2011; 60 (6): 971–974.; Dow J., Bhandari A., Kloner R. A. Ischemic postconditioning’s benefit on reperfusion ventricular arrhythmias is maintained in the senescent heart. J. Cardiovasc. Pharmacol. Ther. 2008; 13 (2): 141–148.; Ostadal B., Kolar F. Cardiac Ischemia: From Injury to Protection. Boston, Dordrecht, London: Kluwer. Academic. Publishers. 1999, 173.; Goodman M. D., Koch S. E., Fuller-Bicer G. A., Butler K. L. Regulating RISK: a role for JAK-STAT signaling in postconditioning? Am. J. Physiol. Heart. Circ. Physiol. 2008; 295 (4): H1649–1656.; HausenloyD. J., TsangA., YellonD. M. Postconditioning does not protect the diabetic heart. J. Mol. Cell. Cardiol. 2006; 40 (6): 958.; Przyklenk K., Maynard M., Greiner D. L., Whittaker P. Cardioprotection with postconditioning: loss of efficacy in murine models of type-2 and type-1 diabetes. Antioxid. Redox. Signal. 2011; 14 (5): 781–790.; Darling C. E., Jiang R., Maynard M., Whittaker P., Vinten-Johansen J., Przyklenk K. Postconditioning via stuttering reperfusion limits myocardial infarct size in rabbit hearts: role of ERK1/2. Am. J. Physiol. Heart. Circ. Physiol. 2005; 289 (4): H1618–1626.; Ren J. Y., Song J. X., Lu M. Y., Chen H. Cardioprotection by ischemic postconditioning is lost in isolated perfused heart from diabetic rats: Involvement of transient receptor potential vanilloid 1, calcitonin gene-related peptide and substance P. Regul. Pept. 2011; 169 (1–3): 49–57.; Fan Y., Yang S., Zhang X., Cao Y., Huang Y. Comparison of cardioprotective efficacy resulting from a combination of atorvastatin and ischaemic post-conditioning in diabetic and non-diabetic rats. Clin. Exp. Pharmacol. Physiol. 2012; 39 (11): 938–943.; Najafi M., Farajnia S., Mohammadi M., Badalzadeh R., Ahmadi Asl N., Baradaran B. et al. Inhibition of mitochondrial permeability transition pore restores the cardioprotection by postconditioning in diabetic hearts. J. Diabetes Metab. Disord. 2014; 13 (1): 106.; Lacerda L., Opie L. H., Lecour S. Influence of tumour necrosis factor alpha on the outcome of ischaemic postconditioning in the presence of obesity and diabetes. Exp. Diabetes Res. 2012; 2012: 502–654.; Oosterlinck W., Dresselaers T., Geldhof V., Nevelsteen I., Janssens S., Himmelreich U. et al. Diabetes mellitus and the metabolic syndrome do not abolish, but might reduce, the cardioprotective effect of ischemic postconditioning. J. Thorac. Cardiovasc. Surg. 2013; 145 (6): 1595–1602.; Zhu M., Feng J., Lucchinetti E., Fischer G., Xu L., Pedrazzini T. et al. Ischemic postconditioning protects remodeled myocardium via the PI3K-PKB/Akt reperfusion injury salvage kinase pathway. Cardiovasc. Res. 2006; 72 (1): 152–162.; Fantinelli J. C., Mosca S. M. Comparative effects of ischemic pre and postconditioning on ischemia-reperfusion injury in spontaneously hypertensive rats (SHR). Mol. Cell. Biochem. 2007; 296 (1–2): 45–51.; Penna C., Tullio F., Moro F., Folino A., Merlino A., Pagliaro P. Effects of a protocol of ischemic postconditioning and/or captopril in hearts of normotensive and hypertensive rats. Basic. Res. Cardiol. 2010; 105 (2): 181–192.; Gonzalez Arbeláez L. F., Pérez Núñez I. A., Mosca S. M. Gsk-3β inhibitors mimic the cardioprotection mediated by ischemic pre- and postconditioning in hypertensive rats. Biomed. Res. Int. 2013; 2013: 317–456.; Maslov L. N., Gorbunov A. S., Lishmanov Y. B. Cardioprotective effect of ischemic postconditioning on the model of isolated heart. Bull. Exp. Biol. Med. 2012; 153 (3): 313–314.; Li X. M., Ma Y. T., Yang Y. N., Zhang J. F., Chen B. D., Liu F. et al. Ischemic postconditioning protects hypertrophic myocardium by ERK1/2 signaling pathway: experiment with mice. Zhonghua Yi Xue Za Zhi. 2009; 89 (12): 846–850.; Hernandez-Resendiz S., Roldán F. J., Correa F., Martínez-Abundis E., Osorio-Valencia G., Ruíz-de-Jesús O. et al. Postconditioning protects against reperfusion injury in hypertensive dilated cardiomyopathy by activating MEK/ERK1/2 signaling. J. Card. Fail. 2013; 19 (2): 135–146.; Ferrera R., Bopassa J. C., Angoulvant D., Ovize M. Post-conditioning protects from cardioplegia and cold ischemia via inhibition of mitochondrial permeability transition pore. J. Heart. Lung. Transplant. 2007; 26 (6): 604–609.; Lauzier B., Sicard P., Bouchot O., Delemasure S., Menetrier F., Moreau D. et al. After four hours of cold ischemia and cardioplegic protocol, the heart can still be rescued with postconditioning. Transplantation. 2007; 84 (11): 1474–1482.; Shinohara G., Morita K., Nagahori R., Koh Y., Kinouchi K., Abe T. et al. Ischemic postconditioning promotes left ventricular functional recovery after cardioplegic arrest in an in vivo piglet model of global ischemia reperfusion injury on cardiopulmonary bypass. J. Thorac. Cardiovasc. Surg. 2011; 142 (4): 926–932.; Maruyama Y., Chambers D. J. Ischaemic postconditioning: does cardioplegia influence protection? Eur. J. Cardiothorac. Surg. 2012; 42 (3): 530–539.; Penna C., Tullio F., Merlino A., Moro F., Raimondo S., Rastaldo R. et al. Postconditioning cardioprotection against infarct size and post-ischemic systolic dysfunction is influenced by gender. Basic Res Cardiol. 2009; 104 (4): 390–402.; Sivaraman V., Mudalagiri N. R., Di Salvo C., Kolvekar S., Hayward M., Yap J. et al. Postconditioning protects human atrial muscle through the activation of the RISK pathway. Basic. Res. Cardiol. 2007; 102 (5): 453–459.; Roleder T., Gołba K. S., Kunecki M., Malinowski M., Biernat J., Smolka G. et al. The co-application of hypoxic preconditioning and postconditioning abolishes their own protective effect on systolic function in human myocardium. Cardiol. J. 2013; 20 (5): 472–477.; Zhao W. S., Xu L., Wang L. F., Zhang L., Zhang Z.Y., Liu Y. et al. A 60-s postconditioning protocol by percutaneous coronary intervention inhibits myocardial apoptosis in patients with acute myocardial infarction. Apoptosis. 2009; 14 (10): 1204–1211.; Ярилин А. А. Апоптоз: природа феномена и его роль в норме и при патологии. Актуальные проблемы патофизиологии: избранные лекции. Под ред. Б. Б. Мороза. М.; Медицина; 2001; 15–56. Yarilin A. A. Apoptosis: the nature of the phenomenon and its role in health and disease. In.: Actual problems of pathophysiology: Selected lectures. Ed. B. B. Moroz. Moscow: Meditsina; 2001; 15–56. [In Russ].; Nagata S., Golstein P. The Fas death factor. Science. 1995; 267 (5203): 1449–1456.; Musiał K., Zwolińska D. Matrix metalloproteinases and soluble Fas/FasL system as novel regulators of apoptosis in children and young adults on chronic dialysis. Apoptosis. 2011; 16 (7): 559–653.; Fan Q., Yang X. C., Liu Y., Wang L. F., Liu S. H., Ge Y. G. et al. Postconditioning attenuates myocardial injury by reducing nitro-oxidative stress in vivo in rats and in humans. Clin. Sci. (Lond). 2010; 120 (6): 251–261.; Casos K., Perez M., Blasco-Lucas A., Gracia J., Permanyer E., Sureda C. et al. Is ischemic postconditioning really effective in protecting the human myocardium? The role of the protocol applied and of clinical conditions. Cardiovasc. Res. 2014; 103 Suppl 1: P421.

  9. 9
  10. 10
  11. 11
  12. 12
  13. 13
  14. 14
  15. 15
  16. 16
  17. 17
  18. 18
  19. 19
  20. 20