Εμφανίζονται 1 - 20 Αποτελέσματα από 364 για την αναζήτηση '"Обыкновенные дифференциальные уравнения"', χρόνος αναζήτησης: 0,73δλ Περιορισμός αποτελεσμάτων
  1. 1
  2. 2
  3. 3
  4. 4
  5. 5
  6. 6
  7. 7
  8. 8
  9. 9
  10. 10
  11. 11
    Academic Journal

    Πηγή: Eastern-European Journal of Enterprise Technologies; Том 1, № 4 (103) (2020): Mathematics and Cybernetics-applied aspects; 43-52
    Восточно-Европейский журнал передовых технологий; Том 1, № 4 (103) (2020): Математика и кибернетика-прикладные аспекты; 43-52
    Східно-Європейський журнал передових технологій; Том 1, № 4 (103) (2020): Математика та кібернетика-прикладні аспекти; 43-52

    Περιγραφή αρχείου: application/pdf

  12. 12
    Academic Journal

    Πηγή: Вестник Томского государственного университета. Управление, вычислительная техника и информатика. 2023. № 63. С. 45-52

    Περιγραφή αρχείου: application/pdf

  13. 13
    Academic Journal

    Συνεισφορές: This work was financially supported by the Russian Science Foundation, project No. 22-71-10028.

    Πηγή: Vavilov Journal of Genetics and Breeding; Том 27, № 7 (2023); 755-767 ; Вавиловский журнал генетики и селекции; Том 27, № 7 (2023); 755-767 ; 2500-3259 ; 10.18699/VJGB-23-83

    Περιγραφή αρχείου: application/pdf

    Relation: https://vavilov.elpub.ru/jour/article/view/3975/1762; Akın E., Yeni G., Perelson A.S. Continuous and discrete modeling of HIV-1 decline on therapy. J. Math. Biol. 2020;81(1):1-24. DOI 10.1007/s00285-020-01492-z; Banks H.T., Hu S., Rosenberg E. A dynamical modeling approach for analysis of longitudinal clinical trials in the presence of missing endpoints. Appl. Math. Lett. 2017;63:109-117. DOI 10.1016/j.aml.2016.07.002; Bocharov G., Chereshnev V., Gainova I., Bazhan S., Bachmetyev B., Argilaguet J., Martinez J., Meyerhans A. Human immunodeficiency virus infection: from biological observations to mechanistic mathematical modelling. Math. Model. Nat. Phenom. 2012;7(5):78-104. DOI 10.1051/mmnp/20127507; Bocharov G., Kim A., Krasovskii A., Chereshnev V., Glushenkova V., Ivanov A. An extremal shift method for control of HIV infection dynamics. Russ. J. Numer. Anal. Math. Model. 2015;30(1):11-25. DOI 10.1515/rnam-2015-0002; Bocharov G.A., Nechepurenko Y.M., Khristichenko M.Y., Grebennikov D.S. Optimal perturbations of systems with delayed independent variables for control of dynamics of infectious diseases based on multicomponent actions. J. Math. Sci. 2021;253(5):618-641. DOI 10.1007/s10958-021-05258-w; Bocharov G., Grebennikov D., Cebollada Rica P., Domenjo-Vila E., Casella V., Meyerhans A. Functional cure of a chronic virus infection by shifting the virus – host equilibrium state. Front. Immunol. 2022;13:904342. DOI 10.3389/fimmu.2022.904342; Gandhi R.T., Bedimo R., Hoy J.F., Landovitz R.J., Smith D.M., Eaton E.F., Lehmann C., Springer S.A., Sax P.E., Thompson M.A., Benson C.A., Buchbinder S.P., Del Rio C., Eron J.J., Jr., Günthard H.F., Molina J.-M., Jacobsen D.M., Saag M.S. Antiretroviral drugs for treatment and prevention of HIV infection in adults: 2022 recommendations of the International Antiviral Society-USA Panel. JAMA. 2023;329(1):63-84. DOI 10.1001/jama.2022.22246; Geddes K.O., Czapor S.R., Labahn G. Algorithms for Computer Algebra. Boston: Kluwer Academic, 1992; Golub G.H., Van Loan C.F. Matrix Computations. Baltimore: Johns Hopkins Univ. Press, 1989; Grossman Z., Singh N.J., Simonetti F.R., Lederman M.M., Douek D.C., Deeks S.G., Kawabe T., Bocharov G., Meier-Schellersheim M., Alon H., Chomont N., Grossman Z., Sousa A.E., Margolis L., Maldarelli F. “Rinse and replace”: boosting T cell turnover to reduce HIV-1 reservoirs. Trends Immunol. 2020;41(6):466-480. DOI 10.1016/j.it.2020.04.003; Hadjiandreou M.M., Conejeros R., Wilson I. HIV treatment planning on a case-by-case basis. Int. J. Bioeng. Life Sci. 2009;3(8):387-396; Hairer E., Nørsett S.P., Wanner G. Solving Ordinary Differential Equations I. Springer Series in Computational Mathematics. Vol. 8. Berlin: Springer, 1987. DOI 10.1007/978-3-662-12607-3; Joly M., Pinto J.M. Role of mathematical modeling on the optimal control of HIV-1 pathogenesis. AIChE J. 2006;52(3):856-884. DOI 10.1002/aic.10716; Khristichenko M.Y., Nechepurenko Y.M. Computation of periodic solutions to models of infectious disease dynamics and immune response. Russ. J. Numer. Anal. Math. Model. 2021;36(2):87-99. DOI 10.1515/rnam-2021-0008; Khristichenko M.Y., Nechepurenko Y.M. Optimal disturbances for periodic solutions of time-delay differential equations. Russ. J. Numer. Anal. Math. Model. 2022;37(4):203-212. DOI 10.1515/rnam-20220017; Khristichenko M.Yu., Nechepurenko Yu.M., Grebennikov D.S., Bocharov G.A. Numerical analysis of stationary solutions of systems with delayed argument in mathematical immunology. Sovremennaya Matematika. Fundamental’nye Napravleniya = Contemporary Mathematics. Fundamental Directions. 2022;68(4):686-703. DOI 10.22363/2413-3639-2022-68-4-686-703 (in Russian); Khristichenko M., Nechepurenko Y., Grebennikov D., Bocharov G. Numerical study of chronic hepatitis B infection using Marchuk– Petrov model. J. Bioinform. Comput. Biol. 2023;21(2):2340001. DOI 10.1142/S0219720023400012; Landovitz R.J., Scott H., Deeks S.G. Prevention, treatment and cure of HIV infection. Nat. Rev. Microbiol. 2023;21(10):657-670. DOI 10.1038/s41579-023-00914-1; Ludewig B., Stein J.V., Sharpe J., Cervantes-Barragan L., Thiel V., Bocharov G. A global “imaging” view on systems approaches in immunology. Eur. J. Immunol. 2012;42(12):3116-3125. DOI 10.1002/eji.201242508; Nechepurenko Y.M., Khristichenko M.Y. Computation of optimal disturbances for delay systems. Comput. Math. and Math. Phys. 2019; 59(5):731-746. DOI 10.1134/S0965542519050129; Nechepurenko Y., Khristichenko M., Grebennikov D., Bocharov G. Bistability analysis of virus infection models with time delays. Discrete Cont. Dyn. Syst. ­ S. 2020;13(9):2385-2401. DOI 10.3934/dcdss.2020166; Niessl J., Baxter A.E., Mendoza P., Jankovic M., Cohen Y.Z., Butler A.L., Lu C.-L., Dubé M., Shimeliovich I., Gruell H., Klein F., Caskey M., Nussenzweig M.C., Kaufmann D.E. Combination anti-HIV-1 antibody therapy is associated with increased virus-specific T cell immunity. Nat. Med. 2020;26(2):222-227. DOI 10.1038/s41591-019-0747-1; Nowak M.A., May R.M. Virus Dynamics: Mathematical Principles of Immunology and Virology. Oxford: Oxford Univ. Press, 2000; Perelson A.S., Nelson P.W. Mathematical analysis of HIV-1 dynamics in vivo. SIAM Rev. 1999;41(1):3-44. DOI 10.1137/S0036144598335107; Rasmussen T.A., Søgaard O.S. Clinical interventions in HIV cure research. In: Zhang L., Lewin S.R. (Eds.) HIV Vaccines and Cure. Advances in Experimental Medicine and Biology. Vol. 1075. Singapore: Springer, 2018;285-318. DOI 10.1007/978-981-13-0484-2_12; Savinkova A.A., Savinkov R.S., Bakhmetyev B.A., Bocharov G.A. Mathematical modeling and control of HIV infection dynamics taking into account hormonal regulation. Vestnik Rossiyskogo Universiteta Druzhby Narodov. Seriya Meditsina = RUDN Journal of Medicine. 2019;23(1):79-103. DOI 10.22363/2313-0245-2019-231-79-103 (in Russian); Trickey A., Zhang L., Gill M.J., Bonnet F., Burkholder G., Castagna A., Cavassini M., Cichon P., Crane H., Domingo P., Grabar S., Guest J., Obel N., Psichogiou M., Rava M., Reiss P., Rentsch C.T., Riera M., Schuettfort G., Silverberg M.J., Smith C., Stecher M., Sterling T.R., Ingle S.M., Sabin C.A., Sterne J.A.C. Associations of modern initial antiretroviral drug regimens with all-cause mortality in adults with HIV in Europe and North America: a cohort study. Lancet HIV. 2022;9(6):e404-e413. DOI 10.1016/S2352-3018(22)00046-7; Villani A.-C., Sarkizova S., Hacohen N. Systems immunology: learning the rules of the immune system. Annu. Rev. Immunol. 2018;36(1): 813-842. DOI 10.1146/annurev-immunol-042617-053035; https://vavilov.elpub.ru/jour/article/view/3975

  14. 14
  15. 15
  16. 16
  17. 17
  18. 18
    Academic Journal

    Συνεισφορές: The work was supported by the Russian Foundation for Basic Research (project no. 18-31-20019) and the Council for Grants of the President of the Russian Federation (project no. 075-15-2019-1078 (MK-814.2019.1)).

    Πηγή: Vavilov Journal of Genetics and Breeding; Том 25, № 1 (2021); 82-91 ; Вавиловский журнал генетики и селекции; Том 25, № 1 (2021); 82-91 ; 2500-3259 ; 10.18699/VJ20.677

    Περιγραφή αρχείου: application/pdf

    Relation: https://vavilov.elpub.ru/jour/article/view/2919/1483; Adams B.M., Banks H.T., Davidiana M., Kwona H.D., Trana H.T., Wynnea S.N., Rosenbergb E.S. HIV dynamics: modeling, data analysis, and optimal treatment protocols. J. Comput. Appl. Math. 2004; 184:10-49. DOI 10.1016/j.cam.2005.02.004.; Bellu G., Saccomani M.P., Audoly S., D’Angiò L. DAISY: a new software tool to test global identifiability of biological and physiological systems. Comput. Methods Programs Biomed. 2007;88(1):52-61. DOI 10.1016/j.cmpb.2007.07.002.; Gomez J., Prieto J., Leon E., Rodriguez A. INFEKTA: a general agent-based model for transmission of infectious diseases: studying the COVID-19 propagation in Bogotá – Colombia. MedRxiv. 2020. DOI 10.1101/2020.04.06.20056119.; Habtemariam T., Tameru B., Nganwa D., Beyene G., Ayanwale L., Robnett V. Epidemiologic modeling of HIV/AIDS: use of computational models to study the population dynamics of the disease to assess effective intervention strategies for decision-making. Adv. Syst. Sci. Appl. 2008;8(1):35-39.; Kabanikhin S.I. Definitions and examples of inverse and ill-posed problems. J. Inverse Ill-Posed Probl. 2008;16(4):317-357. DOI 10.1515/JIIP.2008.019.; Kabanikhin S.I., Voronov D.A., Grodz A.A., Krivorotko O.I. Identifiability of mathematical models in medical biology. Russ. J. Genet. Appl. Res. 2016;6(8):838-844. DOI 10.1134/S2079059716070054.; Kermack W.O., McKendrick A.G. A contribution of the mathematical theory of epidemics. Proc. R. Soc. Lond. A. 1927;115:700-721. DOI 10.1098/rspa.1927.0118.; Kerr C., Stuart R., Mistry D., Abeysuriya R., Hart G., Rosenfeld K., Selvaraj P., Nunez R., Hagedorn B., George L., Izzo A., Palmer A., Delport D., Bennette C., Wagner B., Chang S., Cohen J., Panovska-Griffiths J., Jastrzebski M., Oron A., Wenger E., Famulare M., Klein D. Covasim: an agent-based model of COVID-19 dynamics and interventions. MedRxiv. 2020. DOI 10.1101/2020.05.10.20097469.; Krivorotko O.I., Andornaya D.V., Kabanikhin S.I. Sensitivity analysis and practical identifiability of some mathematical models in biology. J. Appl. Ind. Math. 2020a;14:115-130. DOI 10.1134/S1990478920010123.; Krivorotko O.I., Kabanikhin S.I., Zyat’kov N.Yu., Prikhod’ko A.Yu., Prokhoshin N.M., Shishlenin M.A. Mathematical modeling and forecasting of COVID-19 in Moscow and Novosibirsk region. Numer. Analysis Applications. 2020b;13(4):332-348. DOI 10.1134/S1995423920040047.; Lauer S.A., Grantz K.H., Bi Q., Jones F.K., Zheng Q., Meredith H., Azman A.S., Reich N.G., Lessler J. The incubation period of coronavirus disease 2019 (COVID-19) from publicly reported confirmed cases: estimation and application. Ann. Intern. Med. 2020;172:577-582. DOI 10.7326/m20-0504.; Lee W., Liu S., Tembine H., Li W., Osher S. Controlling propagation of epidemics via mean-field games. ArXiv. 2020;arXiv:2006.01249.; Likhoshvai V.A., Fadeev S.I., Demidenko G.V., Matushkin Yu.G. Modeling nonbranching multistage synthesis by an equation with retarded argument. Sibirskiy Zhurnal Industrialnoy Matematiki = Journal of Applied and Industrial Mathematics. 2004;7(1):73-94. (in Russian); Miao H., Xia X., Perelson A.S., Wu H. On identifiability of nonlinear ODE models and applications in viral dynamics. SIAM Rev. 2011;53(1):3-39. DOI 10.1137/090757009.; Raue A., Becker V., Klingmüller U., Timmer J. Identifiability and observability analysis for experimental design in nonlinear dynamical models. Chaos. 2010;20(4):045105. DOI 10.1063/1.3528102.; Raue A., Karlsson J., Saccomani M.P., Jirstrand M., Timmer J. Comparison of approaches for parameter identifiability analysis of biological systems. Bioinformatics. 2014;30(10):1440-1448. DOI 10.1093/bioinformatics/btu006.; Tuomisto J.T., Yrjölä J., Kolehmainen M., Bonsdorff J., Pekkanen J., Tikkanen T. An agent-based epidemic model REINA for COVID-19 to identify destructive policies. MedRxiv. 2020. DOI 10.1101/2020.04.09.20047498.; Unlu E., Leger H., Motornyi O., Rukubayihunga A., Ishacian T., Chouiten M. Epidemic analysis of COVID-19 outbreak and counter-measures in France. MedRxiv. 2020. DOI 10.1101/2020.04.27.20079962.; Verity R., Okell L., Dorigatti I., Winskill P., Whittaker C., Imai N., Cuomo-Dannenburg G., Thompson H., Walker P., Fu H., Dighe A., Griffin J., Baguelin M., Bhatia S., Boonyasiri S., Cori A., Cucunubá Z., FitzJohn R., Gaythorpe K., Green W., Hamlet A., Hinsley W., Laydon D., Nedjati-Gilani G., Riley S., Elsland S., Volz E., Wang H., Wang Y., Xi X., Donnelly C., Ghani A., Ferguson N.M. Estimates of the severity of coronavirus disease 2019: a model-based analysis. Lancet Infect. Dis. 2020;20(6):669-677. DOI 10.1016/S1473-3099(20)30243-7.; Voropaeva O.F., Tsgoev Ch.A. A numerical model of inflammation dynamics in the core of myocardial infarction. J. Appl. Ind. Math. 2019;13(2):372-383. DOI 10.1134/S1990478919020182.; Wolfram C. An agent-based model of COVID-19. Complex Syst. 2020; 29(1):87-105. DOI 10.25088/ComplexSystems.29.1.87.; Wölfel R., Corman V.M., Guggemos W., Seilmaier M., Zange S., Müller M.A., Niemeyer D., Jones T.C., Vollmar P.V., Rothe C., Hoelscher M., Bleicker T., Brünink S., Schneider J., Ehmann R., Zwirglmaier K., Drosten C., Wendtner C. Virological assessment of hospitalized patients with COVID-2019. Nature. 2020;581:465-469. DOI 10.1038/s41586-020-2196-x.; Yao K.Z., Shaw B.M., Kou B., McAuley K.B., Bacon D.W. Modeling ethylene/butene copoly-merization with multi-site catalysts: parameter estimability and experimental design. Polymer Reaction Engineer. 2003;11(3):563-588. DOI 10.1081/PRE-120024426.; https://vavilov.elpub.ru/jour/article/view/2919

  19. 19
  20. 20
    Book

    Συνεισφορές: Институт математики и механики им.Н.И.Лобачевского, Казанский федеральный университет

    Σύνδεσμος πρόσβασης: https://openrepository.ru/article?id=412733