Εμφανίζονται 1 - 20 Αποτελέσματα από 110 για την αναζήτηση '"НАСЛЕДСТВЕННАЯ ПРЕДРАСПОЛОЖЕННОСТЬ"', χρόνος αναζήτησης: 0,80δλ Περιορισμός αποτελεσμάτων
  1. 1
  2. 2
  3. 3
  4. 4
  5. 5
  6. 6
    Academic Journal

    Συνεισφορές: The study was supported by Russian-government–funded project No. 122011800268-1.

    Πηγή: Vavilov Journal of Genetics and Breeding; Том 26, № 4 (2022); 371-377 ; Вавиловский журнал генетики и селекции; Том 26, № 4 (2022); 371-377 ; 2500-3259

    Περιγραφή αρχείου: application/pdf

    Relation: https://vavilov.elpub.ru/jour/article/view/3387/1624; Bronson F.H., De La Rosa J. Tonic-clonic convulsions in meadow voles. Physiol. Behav. 1994;56(4):683-685. DOI 10.1016/0031-9384(94)90227-5.; Buchhalter J.R. Animal models of inherited epilepsy. Epilepsia. 1993; 34(Suppl. 3): S31-S41. DOI 10.1111/j.1528-1157.1993.tb05921.; Buckmaster P.S. Inherited epilepsy in Mongolian gerbils. In: Pitkä- nen A., Schwartzkroin P.A., Moshé S.L. (Eds.). Models of seizures and epilepsy. Ch. 21. Burlington: Academic Press, 2006;273-294. DOI 10.1016/b978-012088554-1/50023-2.; Catala A., Cousillas H., Hausberger M., Grandgeorge M. Dog alerting and/or responding to epileptic seizures: A scoping review. PLoS One. 2018;13(12):e0208280. DOI 10.1371/journal.pone.020828.; Evsikov V.I., Muzyka V.Y., Nazarova G.G., Potapova O.F., Potapov M.A. Effect of hydrological conditions on reproduction rate and population structure of the European water vole, Arvicola amphibious. Ekologia = Russian Journal of Ecology. 2017;48(3):290- 293. DOI 10.1134/S1067413617030055; Fedotova I.B., Surina N.M., Nikolaev G.M., Revishchin A.V., Poletaeva I.I. Rodent brain pathology, audiogenic epilepsy. Biomedicines. 2021;9(11):1641. DOI 10.3390/biomedicines9111641.; Grone B.P., Baraban S.C. Animal models in epilepsy research: legacies and new directions. Nat. Neurosci. 2015;18(3):339-343. DOI 10.1038/nn.3934.; Gülersoy E., İyigün S.S., Erol B.B. An overview of seizures and epilepsy in rabbits: etiological differences and clinical management. Nauk. Vìsn. Vet. Med. 2021;1(165):159-164. DOI:10.33245/2310-4902-2021-165-1-159-164.; Jackson R.K. Unusual laboratory rodent species: research uses, care, and associated biohazards. ILAR J. 1997;38(1):13-21. DOI 10.1093/ilar.38.1.13.; Krotova L.G. Changes in the adrenal glands and carbohydrate metabolism in the water vole (Arvicola terresrris) in the spring-summer period. In: Issues of the intraspecific variability of mammals. Proceedings of the Institute of Biology. Sverdlovsk, 1962;29:129-140. (in Russian); Ludvig N., Farias P.A., Ribak C.E. An analysis of various environmental and specific sensory stimuli on the seizure activity of the Mongolian gerbil. Epilepsy Res. 1991;8(1):30-35. DOI 10.1016/0920-1211(91)90033-c.; Marshall G.F., Gonzalez-Sulser A., Abbott C.M. Modelling epilepsy in the mouse: challenges and solutions. Dis. Model. Mech. 2021;14(3): dmm047449. DOI 10.1242/dmm.047449.; Muñoz L.J., Carballosa-Gautam M.M., Yanowsky K., García-Atarés N., López D.E. The genetic audiogenic seizure hamster from Salamanca: The GASH:Sal. Epilepsy Behav. 2017;71(Pt. B):181- 192. DOI 10.1016/j.yebeh.2016.03.002.; Myers C.T., Mefford H.C. Advancing epilepsy genetics in the genomic era. Genome Med. 2015;7(1):91. DOI 10.1186/s13073-015-0214-7.; Okudan Z.V., Özkara Ç. Reflex epilepsy: triggers and management strategies. Neuropsychiatr. Dis. Treat. 2018;14:327-337. DOI 10.2147/NDT.S107669.; Pakozdy A., Halasz P., Klang A. Epilepsy in cats: theory and practice. J. Vet. Intern. Med. 2014;28(2):255-263. DOI 10.1111/jvim.12297.; Poletaeva I.I., Kostyna Z.A., Surina N.M., Fedotova I.B., Zorina Z.A. The Krushinsky–Molodkina genetic rat strain as a unique experimental model of seizure states. Vavilovskii Zhurnal Genetiki i Selektsii = Vavilov Journal of Genetics and Breeding. 2017;21(4):427- 434. DOI 10.18699/VJ17.261. (in Russian); Schønecker B. Handling-induced tonic/clonic seizures in captive born bank voles (Clethrionomys glareolus). Appl. Anim. Behav. Sci. 2009; 118(1-2):84-90. DOI 10.1016/j.applanim.2009.02.02.; Skradski S.L., White H.S., Ptácek L.J. Genetic mapping of a locus (mass1) causing audiogenic seizures in mice. Genomics. 1998;49(2): 188-192. DOI 10.1006/geno.1998.5229.; The Water vole: an image of the species. Moscow: Nauka, 2001;527. (in Russian); Weber J.-M., Aubry S., Ferrari N., Fischer C., Lachat Feller N., Meia J.-S., Meyer S. Population changes of different predators during a water vole cycle in a central European mountainous habitat. Ecography. 2002;25(1):95-101. DOI 10.1034/j.1600-0587.2002.250111.; https://vavilov.elpub.ru/jour/article/view/3387

  7. 7
    Academic Journal

    Πηγή: Medical Genetics; Том 21, № 7 (2022); 4-7 ; Медицинская генетика; Том 21, № 7 (2022); 4-7 ; 2073-7998

    Περιγραφή αρχείου: application/pdf

    Relation: https://www.medgen-journal.ru/jour/article/view/2095/1562; Баранов В.С., Баранова Е.В., Иващенко Т.Э., Асеев М.В. Геном человека и гены предрасположенности. Введение в предиктивную медицину. СПб.: Изд-во «Интермедика»; 2000:263.; Bahia W., Finan R.R., Al-Mutawa M. et al. Genetic variation in the progesterone receptor gene and susceptibility to recurrent pregnancy loss: a case-control study. BJOG. 2018; 125(6): 729-735.; Su M.T., Lin S.H. Chen Y.C. Association of sex hormone receptor gene polymorphisms with recurrent pregnancy loss: a systematic review and meta-analysis. Fertil Steril. 2011; 96(6): 1435-1444.; Cupisti S., Fasching P.A., Ekici A.B. et al. Polymorphisms in estrogen metabolism and estrogen pathway genes and the risk of miscarriage. Arch Obstet Gynaecol. 2009; 280: 395-400.; Cope D.I., Monsivais D. Progesterone Receptor Signaling in the Uterus Is Essential for Pregnancy Success. Cells. 2022; 11(9):1474.; Gadkar-Sable S., Shah C., Rosario G., Sachdeva G., Puri C. Progesterone receptors: various forms and functions in reproductive tissues. Front Biosci. 2005; 10: 2118-2130.; Yin X.-Q., Ju H.-M. Guo Q. et al. Association of Estrogen Receptor 1 Genetic Polymorphisms with Recurrent Spontaneous Abortion Risk. Chin Med J (Engl). 2018; 131(15): 1857-1865.

  8. 8
    Academic Journal

    Πηγή: Siberian journal of oncology; Том 20, № 5 (2021); 162-169 ; Сибирский онкологический журнал; Том 20, № 5 (2021); 162-169 ; 2312-3168 ; 1814-4861 ; 10.21294/1814-4861-2021-20-5

    Περιγραφή αρχείου: application/pdf

    Relation: https://www.siboncoj.ru/jour/article/view/1929/914; Ruijter E., van de Kaa C., Miller G., Ruiter D., Debruyne F., Schalken J. Molecular genetics and epidemiology of prostate carcinoma. Endocr Rev. 1999 Feb; 20(1): 22–45. doi:10.1210/edrv.20.1.0356.; Franceschi S., Wild C.P. Meeting the global demands of epidemiologic transition – the indispensable role of cancer prevention. Mol Oncol. 2013 Feb; 7(1): 1–13. doi:10.1016/j.molonc.2012.10.010.; Аксель Е.М. Заболеваемость злокачественными новообразованиями мочевых и мужских половых органов в России в 2003 году. Онкоурология. 2005; 1: 6–9.; Нургазиев Р.И., Сейтказина Г.Д., Байпеисов Д.М. Показатели онкологической службы Республики Казахстан за 2018 год (статистические материалы). Алматы. 2018; 2: 138 c.; Rowles J.L.3rd, Ranard K.M., Smith J.W., An R., Erdman J.W.Jr. Increased dietary and circulating lycopene are associated with reduced prostate cancer risk: a systematic review and meta-analysis. Prostate Cancer Prostatic Dis. 2017 Dec; 20(4): 361–377. doi:10.1038/pcan.2017.25.; Karunasinghe N., Lange K., Yeo Han D., Goudie M., Zhu S.H., Wang A., Bishop K.R., Ferguson L.G., Masters J. Androgen Pathway Related Gene Variants and Prostate Cancer Association in Auckland Men. Curr Pharmacog Personal Med. 2013, 11: 22–30.; Solana R., Tarazona R., Gayoso I., Lesur O., Dupuis G., Fulop T. Innate immunosenescence: effect of aging on cells and receptors of the innate immune system in humans. Semin Immunol. 2012 Oct; 24(5): 331–41. doi:10.1016/j.smim.2012.04.008.; Hajishengallis G. Aging and its Impact on Innate Immunity and Inflammation: Implications for Periodontitis. J Oral Biosci. 2014 Feb 1; 56(1): 30–37. doi:10.1016/j.job.2013.09.001.; Mahbub S., Brubaker A.L., Kovacs E.J. Aging of the Innate Immune System: An Update. Curr Immunol Rev. 2011; 7(1): 104–15. doi:10.2174/157339511794474181.; Kazma R., Mefford J.A., Cheng I., Plummer S.J., Levin A.M., Rybicki B.A., Casey G., Witte J.S. Association of the innate immunity and inflammation pathway with advanced prostate cancer risk. PLoS One. 2012; 7(12): e51680. doi:10.1371/journal.pone.0051680.; Craige S.M., Kant S., Reif M., Chen K., Pei Y., Angoff R., Sugamura K., Fitzgibbons T., Keaney J.F.Jr. Endothelial NADPH oxidase 4 protects ApoE-/- mice from atherosclerotic lesions. Free Radic Biol Med. 2015 Dec; 89: 1–7. doi:10.1016/j.freeradbiomed.2015.07.004.; Elmslie J.L., Sellman J.D., Schroder R.N., Carter F.A. The NEEDNT Food List: non-essential, energy-dense, nutritionally-deficient foods. NZ Med J. 2012 Feb 24; 125(1350): 84–92.; Zhuang L., Kim J., Adam R.M., Solomon K.R., Freeman M.R. Cholesterol targeting alters lipid raft composition and cell survival in prostate cancer cells and xenografts. J Clin Invest. 2005; 115(4): 959–68. doi:10.1172/JCI19935.; Brown A.J. Cholesterol, statins and cancer. Clin Exp Pharmacol Physiol. 2007 Mar; 34(3): 135–41. doi:10.1111/j.1440-1681.2007.04565.x.; Krycer J.R., Brown A.J. Cholesterol accumulation in prostate cancer: a classic observation from a modern perspective. Biochim Biophys Acta. 2013 Apr; 1835(2): 219–29. doi:10.1016/j.bbcan.2013.01.002.; Prabhu A.V., Krycer J.R., Brown A.J. Overexpression of a key regulator of lipid homeostasis, Scap, promotes respiration in prostate cancer cells. FEBS Lett. 2013 Apr 2; 587(7): 983–8. doi:10.1016/j.febslet.2013.02.040.; Huang C., Freter C. Lipid metabolism, apoptosis and cancer therapy. Int J Mol Sci. 2015 Jan 2; 16(1): 924–49. doi:10.3390/ijms16010924.; Rosca M.G., Vazquez E.J., Chen Q., Kerner J., Kern T.S., Hoppel C.L. Oxidation of fatty acids is the source of increased mitochondrial reactive oxygen species production in kidney cortical tubules in early diabetes. Diabetes. 2012 Aug; 61(8): 2074–83. doi:10.2337/db11-1437.; Dalleau S., Baradat M., Guéraud F., Huc L. Cell death and diseases related to oxidative stress: 4-hydroxynonenal (HNE) in the balance. Cell Death Differ. 2013 Dec; 20(12): 1615–30. doi:10.1038/cdd.2013.138.; Ellison P.T., Bribiescas R.G., Bentley G.R., Campbell B.C., Lipson S.F., Panter-Brick C., Hill K. Population variation in age-related decline in male salivary testosterone. Hum Reprod. 2002 Dec; 17(12): 3251–3. doi:10.1093/humrep/17.12.3251.; Kenny A.M., Prestwood K.M., Marcello K.M., Raisz L.G. Determinants of bone density in healthy older men with low testosterone levels. J Gerontol Am Biol Sci Med Sci. 2000 Sep; 55(9): M492–7. doi:10.1093/gerona/55.9.m49; Harman S.M., Metter E.J., Tobin J.D., Pearson J., Blackman M.R.; Baltimore Longitudinal Study of Aging. Longitudinal effects of aging on serum total and free testosterone levels in healthy men. Baltimore Longitudinal Study of Aging. J Clin Endocrinol Metab. 2001; 86(2): 724–31. doi:10.1210/jcem.86.2.7219.; Feldman H.A., Longcope C., Derby C.A., Johannes C.B., Araujo A.B., Coviello A.D., Bremner W.J., McKinlay J.B. Age trends in the level of serum testosterone and other hormones in middle-aged men: longitudinal results from the Massachusetts male aging study. J Clin Endocrinol Metab. 2002 Feb; 87(2): 589–98. doi:10.1210/jcem.87.2.8201.; Arnold J.T. DHEA metabolism in prostate: For better or worse? Mol Cell Endocrinol. 2009 Mar 25; 301(1–2): 83–8. doi:10.1016/j.mce.2008.10.019.; Wu F.C., Tajar A., Pye S.R., Silman A.J., Finn J.D., O’Neill T.W., Bartfai G., Casanueva F., Forti G., Giwercman A., Huhtaniemi I.T., Kula K., Punab M., Boonen S., Vanderschueren D.; European Male Aging Study Group. Hypothalamic-pituitary-testicular axis disruptions in older men are differentially linked to age and modifiable risk factors: the European Male Aging Study. J Clin Endocrinol Metab. 2008 Jul; 93(7): 2737–45. doi:10.1210/jc.2007-1972.; Araujo A.B., Wittert G.A. Endocrinology of the aging male. Best Pract Res Clin Endocrinol Metab. 2011; 25(2): 303–19. doi:10.1016/j.beem.2010.11.004.; Schatzl G., Madersbacher S., Thurridl T., Waldmüller J., Kramer G., Haitel A., Marberger M. High-grade prostate cancer is associated with low serum testosterone levels. Prostate. 2001 Apr; 47(1): 52–8. doi:10.1002/pros.1046.; Schaid D.J. The complex genetic epidemiology of prostate cancer. Hum Mol Genet. 2004 Apr 1; 13 Spec No 1: R103–21. doi:10.1093/hmg/ddh072.; Al Olama A.A., Kote-Jarai Z., Berndt S.I., Conti D.V., Schumacher F., Han Y., Benlloch S., Hazelett D.J., Wang Z., Saunders E., Leongamornlert D., Lindstrom S., Jugurnauth-Little S., Dadaev T., Tymrakiewicz M., Stram D.O., Rand K., Wan P., Stram A., Sheng X., Pooler L.C., Park K., Xia L., Tyrer J., Kolonel L.N., Le Marchand L., Hoover R.N., Machiela M.J., Yeager M., Burdette L., Chung C.C., Hutchinson A., Yu K., Goh C., Ahmed M., Govindasami K., Guy M., Tammela T.L., Auvinen A., Wahlfors T., Schleutker J., Visakorpi T., Leinonen K.A., Xu J., Aly M., Donovan J., Travis R.C., Key T.J., Siddiq A., Canzian F., Khaw K.T., Takahashi A., Kubo M., Pharoah P., Pashayan N., Weischer M., Nordestgaard B.G., Nielsen S.F., Klarskov P., Røder M.A., Iversen P., Thibodeau S.N., McDonnell S.K., Schaid D.J., Stanford J.L., Kolb S., Holt S., Knudsen B., Coll A.H., Gapstur S.M., Diver W.R., Stevens V.L., Maier C., Luedeke M., Herkommer K., Rinckleb A.E., Strom S.S., Pettaway C., Yeboah E.D., Tettey Y., Biritwum R.B., Adjei A.A., Tay E., Truelove A., Niwa S., Chokkalingam A.P., Cannon-Albright L., Cybulski C., Wokołorczyk D., Kluźniak W., Park J., Sellers T., Lin H.Y., Isaacs W.B., Partin A.W., Brenner H., Dieffenbach A.K., Stegmaier C., Chen C., Giovannucci E.L., Ma J., Stampfer M., Penney K.L., Mucci L., John E.M., Ingles S.A., Kittles R.A., Murphy A.B., Pandha H., Michael A., Kierzek A.M., Blot W., Signorello L.B., Zheng W., Albanes D., Virtamo J., Weinstein S., Nemesure B., Carpten J., Leske C., Wu S.Y., Hennis A., Kibel A.S., Rybicki B.A., Neslund-Dudas C., Hsing A.W., Chu L., Goodman P.J., Klein E.A., Zheng S.L., Batra J., Clements J., Spurdle A., Teixeira M.R., Paulo P., Maia S., Slavov C., Kaneva R., Mitev V., Witte J.S., Casey G., Gillanders E.M., Seminara D., Riboli E., Hamdy F.C., Coetzee G.A., Li Q., Freedman M.L., Hunter D.J., Muir K., Gronberg H., Neal D.E., Southey M., Giles G.G., Severi G.; Breast and Prostate Cancer Cohort Consortium (BPC3); PRACTICAL (Prostate Cancer Association Group to Investigate Cancer-Associated Alterations in the Genome) Consortium; COGS (Collaborative Oncological Gene-environment Study) Consortium; GAME-ON/ELLIPSE Consortium, Cook M.B., Nakagawa H., Wiklund F., Kraft P., Chanock S.J., Henderson B.E., Easton D.F., Eeles R.A., Haiman C.A. A meta-analysis of 87,040 individuals identifies 23 new susceptibility loci for prostate cancer. Nat Genet. 2014 Oct; 46(10): 1103–9. doi:10.1038/ng.3094.; Marzec J., Mao X., Li M., Wang M., Feng N., Gou X., Wang G., Sun Z., Xu J., Xu H., Zhang X., Zhao S.C., Ren G., Yu Y., Wu Y., Wu J., Xue Y., Zhou B., Zhang Y., Xu X., Li J., He W., Benlloch S., Ross-Adams H., Chen L., Li J., Hong Y., Kote-Jarai Z., Cui X., Hou J., Guo J., Xu L., Yin C., Zhou Y., Neal D.E., Oliver T., Cao G., Zhang Z., Easton D.F., Chelala C.; PRACTICAL Consortium; CHIPGECS Group, Al Olama A.A., Eeles R.A., Zhang H., Lu Y.J. A genetic study and meta-analysis of the genetic predisposition of prostate cancer in a Chinese population. Oncotarget. 2016 Apr 19; 7(16): 21393–403. doi:10.18632/oncotarget.7250.; Mao X., Yu Y., Boyd L.K., Ren G., Lin D., Chaplin T., Kudahetti S.C., Stankiewicz E., Xue L., Beltran L., Gupta M., Oliver R.T., Lemoine N.R., Berney D.M., Young B.D, Lu Y.J. Distinct genomic alterations in prostate cancers in Chinese and Western populations suggest alternative pathways of prostate carcinogenesis. Cancer Res. 2010 Jul 1; 70(13): 5207–12. doi:10.1158/0008-5472.CAN-09-4074.; Filella X., Albaladejo M.D., Allué J.A., Castaño M.A., MorellGarcia D., Ruiz M.À., Santamaría M., Torrejón M.J., Giménez N. Prostate cancer screening: guidelines review and laboratory issues. Clin Chem Lab Med. 2019 Sep 25; 57(10): 1474–1487. doi:10.1515/cclm-2018-1252.; Etzioni R., Tsodikov A., Mariotto A., Szabo A., Falcon S., Wegelin J., DiTommaso D., Karnofski K., Gulati R., Penson D.F., Feuer E. Quantifying the role of PSA screening in the US prostate cancer mortality decline. Cancer Causes Control. 2008 Mar; 19(2): 175–81. doi:10.1007/s10552-007-9083-8.; Hugosson J., Carlsson S., Aus G., Bergdahl S., Khatami A., Lodding P., Pihl C.G., Stranne J., Holmberg E., Lilja H. Mortality results from the Göteborg randomised population-based prostate-cancer screening trial. Lancet Oncol. 2010 Aug; 11(8): 725–32. doi:10.1016/S1470-2045(10)70146-7.; Gudmundsson J., Besenbacher S., Sulem P., Gudbjartsson D.F., Olafsson I., Arinbjarnarson S., Agnarsson B.A., Benediktsdottir K.R., Isaksson H.J., Kostic J.P., Gudjonsson S.A., Stacey S.N., Gylfason A., Sigurdsson A., Holm H., Bjornsdottir U.S., Eyjolfsson G.I., Navarrete S., Fuertes F., Garcia-Prats M.D., Polo E., Checherita I.A., Jinga M., Badea P., Aben K.K., Schalken J.A., van Oort I.M., Sweep F.C., Helfand B.T., Davis M., Donovan J.L., Hamdy F.C., Kristjansson K., Gulcher J.R., Masson G., Kong A., Catalona W.J., Mayordomo J.I., Geirsson G., Einarsson G.V., Barkardottir R.B., Jonsson E., Jinga V., Mates D., Kiemeney L.A., Neal D.E., Thorsteinsdottir U., Rafnar T., Stefansson K. Genetic correction of PSA values using sequence variants associated with PSA levels. Sci Transl Med. 2010 Dec 15; 2(62): 62ra92. doi:10.1126/scitranslmed.3001513.; Kim S., Shin C., Jee S.H. Genetic variants at 1q32.1, 10q11.2 and 19q13.41 are associated with prostate-specific antigen for prostate cancer screening in two Korean population-based cohort studies. Gene. 2015 Feb 10; 556(2): 199–205. doi:10.1016/j.gene.2014.11.059.; Теврюкова Н.С., Богатырев В.Н., Очиргоряев А.Б. Диагностика рака предстательной железы. Сибирский онкологический журнал. 2009; (2): 49–54.; Gilbert R., Martin R.M., Evans D.M., Tilling K., Davey Smith G., Kemp J.P., Lane J.A., Hamdy F.C., Neal D.E., Donovan J.L., Metcalfe C. Incorporating Known Genetic Variants Does Not Improve the Accuracy of PSA Testing to Identify High Risk Prostate Cancer on Biopsy. PLoS One. 2015 Oct 2; 10(10): e0136735. doi:10.1371/journal.pone.0136735.; Liss M.A., Xu J., Chen H., Kader A.K. Prostate genetic score (PGS33) is independently associated with risk of prostate cancer in the PLCO trial. Prostate. 2015 Sep; 75(12): 1322–8. doi:10.1002/pros.23012.; Grönberg H., Adolfsson J., Aly M., Nordström T., Wiklund P., Brandberg Y., Thompson J., Wiklund F., Lindberg J., Clements M., Egevad L., Eklund M. Prostate cancer screening in men aged 50-69 years (STHLM3): a prospective population-based diagnostic study. Lancet Oncol. 2015 Dec; 16(16): 1667–76. doi:10.1016/S1470-2045(15)00361-7.; Лисицкая К.В., Крахмалева И.Н., Шишкин С.С. Изучение однонуклеотидного полиморфизма семи генов (GHR, IGFBP3, IGFR1, IRS1, FMN1, ANXA2, TAGLN) у этнических русских и у больных раком предстательной железы. Молекулярная генетика, микробиология и вирусология. 2010; 2: 34–37.; Оскина Н.А., Ермоленко Н.А., Боярских У.А., Лазарев А.Ф., Петрова В.Д., Ганов Д.И., Кунин И.С., Тоначева О.Г., Лифшитс Г.И., Филипенко М.Л. Изучение ассоциации однонуклеотидных полиморфных замен в генах ферментов антиоксидантной системы с риском развития рака предстательной железы в сибирском регионе России. Сибирский онкологический журнал. 2013; (3): 37–42.; Оскина Н.А., Боярских У.А., Лазарев А.Ф., Петрова В.Д., Ганов Д.И., Тоначева О.Г., Лифшитс Г.И., Филипенко М.Л. Исследование влияния полиморфных замен в гене рецептора витамина D на риск развития рака предстательной железы в Западно-сибирском регионе РФ. Российский биотерапевтический журнал. 2011;10(4): 67–70.; Ракул С.А., КамиловаТ.А., Голота А.С., Щербак С.Г. Прогностические и предиктивные биомаркеры рака предстательной железы. Онкоурология. 2017; 4(13): 111–121.; Заридзе Д.Г., Каприн А.Д., Стилиди И.С. Динамика заболеваемости злокачественными новообразованиями и смертности от них в России. Вопросы онкологии. 2018; 5: 578–591.; Алексеев Б.Я., Нюшко К.М., Каприн А.Д. Аналоги лютеинизирующего гормона рилизинг-гормона в терапии больных раком предстательной железы. Медицинский совет. 2018; 2(19): 96–100.; Матвеев В.Б., Киричек А.А., Савинкова А.В., Хачатурян А.В., Головина Д.А., Любченко Л.Н. Влияние терминальных мутаций в гене CHEK2 на выживаемость до биохимического рецидива и безметастатическую выживаемость после радикального лечения у больных раком предстательной железы. Онкоурология. 2018; 4(14): 53–67.; Гилязова И.Р., Кунсбаева Г.Б., Мустафин А.Т., Измайлов А.А., Папоян А.О., Павлов В.Н., Хуснутдинова Э.К. Роль некоторых полиморфных вариантов гена 5-альфаредуктазы в патогенезе рака предстательной железы. Медицинский вестник Башкортостана. 2017; 3(12): 70–73.; Алексеев Б.Я. Гормональная терапия в комбинированном лечении рака предстательной железы. Вместе против рака 2004; (3): 35–38.; Канаева М.Д., Воробцова И.Е. Генетические маркеры предрасположенности к возникновению рака предстательной железы. Онкоурология. 2015; 3(11): 16–23.; Киричек А.А., Любченко Л.Н., Матвеев В.Б. Рискадаптированный подход к скринингу рака предстательной железы. Онкоурология. 2018; 2(14): 109–121. doi:10.17650/1726-9776-2018-14-2-109-121.; Шкурников М.Ю., Макарова Ю.А., Князев Е.Н., Зотиков А.А., Нюшко К.М., Алексеев Б.Я., Каприн А.Д. Экспрессия циркулирующих микроРНК в связи с лимфогенным метастазированием рака предстательной железы. Онкоурология. 2018; 14(2): 109–121. doi:10.17650/1726-9776-2018-14-1-87-93.; https://www.siboncoj.ru/jour/article/view/1929

  9. 9
    Academic Journal

    Συγγραφείς: Iu. E. Azarova, Ю. Э. Азарова

    Πηγή: Medical Genetics; Том 20, № 8 (2021); 37-47 ; Медицинская генетика; Том 20, № 8 (2021); 37-47 ; 2073-7998

    Περιγραφή αρχείου: application/pdf

    Relation: https://www.medgen-journal.ru/jour/article/view/1961/1509; Дедов И.И., Шестакова М.В., Майоров А.Ю., Шамхалова М.Ш., Сухарева О.Ю., Галстян Г.Р. и др. Сахарный диабет 2 типа у взрослых. Сахарный диабет 2020; 23(2S): 4-102. doi.org/10.14341/DM12507.; Volpe C.M.O., Villar-Delfino P.H., Dos Anjos P.M.F., Nogueira-Machado J.A. Cellular death, reactive oxygen species (ROS) and diabetic complications. Cell death and disease 2018; 9(2): 1-9. doi.org/10.1038/s41419-017-0135-z.; Urner S., Ho F., Jha J.C., Ziegler D., Jandeleit-Dahm K. NADPH oxidase inhibition: preclinical and clinical studies in diabetic complications. Antioxidants and redox signaling 2020; 33(6): 415-434. doi.org/10.1089/ars.2020.8047.; Haeusler R.A., McGraw T.E., Accili D. Biochemical and cellular properties of insulin receptor signalling. Nat. Rev. Mol. Cell Biol 2018; 19: 31-44. doi.org/10.1038/nrm.2017.89.; Petersen M.C., Shulman G.I. Mechanisms of insulin action and insulin resistance. Physiol. Rev. 2018; 98: 2133-2223. doi.org/10.1152/physrev.00063.2017.; Onyango A.N. Cellular stresses and stress responses in the pathogenesis of insulin resistance. Oxid. Med. Cell Longev. 2018; 4321714. doi.org/10.1155/2018/4321714.; Sies H., Jones D.P. Reactive oxygen species (ROS) as pleiotropic physiological signalling agents. Nat Rev Mol Cell Biol 2020; 21: 363-383. doi.org/10.1038/s41580-020-0230-3.; Bushueva O.Y. Genetic Variants rs1049255 CYBA and rs2333227 MPO are Associated with Susceptibility to Coronary Artery Disease in Russian Residents of Central Russia. Kardiologiia 2020; 60(10): 1229-1229. doi.org/10.18087/cardio.2020.10.n1229.; Бушуева О.Ю., Долженкова Е.М., Барышев А.С., Иванова Н.В., Рыжаева В.Н., Разинькова Н.С. и др. Исследование взаимосвязи полиморфизма C667T гена MTHFR c риском развития ишемической болезни сердца у русских жителей Центральной России. Курский научно-практический вестник «Человек и его здоровье» 2015; 4: 76-80.; Долженкова Е.М., Барышев А.С., Иванова Н.В., Бушуева О.Ю., Иванов В.П., Полоников А.В. Исследование взаимосвязи полиморфизмов-1612 5A/6A гена MMP3 и 2003G> A гена MMP9 c риском развития ишемической болезни сердца у русских жителей Центральной России. Курский научно-практический вестник «Человек и его здоровье» 2016; (3): 63-66. doi.org/10.21626/vestnik/2016-3/10.; Vichova T, Motovska Z. Oxidative stress: Predictive marker for coronary artery disease. Exp Clin Cardiol. 2013;18(2): e88-e91.; Дедов И.И., Шестакова М.В., Майоров А.Ю., Викулова О.К., Галстян Г.Р., Кураева Т.Л. и др. Алгоритмы специализированной медицинской помощи больным сахарным диабетом. Сахарный диабет 2019; 22(1S1): 1-144. doi.org/10.14341/DM221S1.; Shen E., Li Y., Li Y., Shan L., Zhu H., Feng Q. et al. Rac1 is required for cardiomyocyte apoptosis during hyperglycemia. Diabetes 2009; 58(10): 2386-2395. doi.org/10.2337/db08-0617.; Roe N.D., Thomas D.P., Ren J. Inhibition of NADPH oxidase alleviates experimental diabetes-induced myocardial contractile dysfunction. Diabetes, Obesity and Metabolism 2011; 13(5): 465-473. doi.org/10.1111/j.1463-1326.2011.01369.x.; Gray S.P., Di Marco E., Okabe J., Szyndralewiez C., Heitz F., Montezano A.C. et al. NADPH oxidase 1 plays a key role in diabetes mellitus-accelerated atherosclerosis. Circulation 2013; 127(18): 1888-1902. doi.org/10.1161/CIRCULATIONAHA.112.132159.; Schiattarella G.G., Carrizzo A., Ilardi F., Damato A., Ambrosio M., Madonna M. et al. Rac1 modulates endothelial function and platelet aggregation in diabetes mellitus. Journal of the American Heart Association 2018; 7(8): e007322. doi.org/10.1161/JAHA.117.007322.; Aggarwal H., Kanuri B.N., Dikshit M. Role of iNOS in Insulin Resistance and Endothelial Dysfunction. Oxidative Stress in Heart Diseases Springer, Singapore 2019; P. 461-482. doi.org/10.1007/978-981-13-8273-4_21.; Forrester S.J., Kikuchi D.S., Hernandes M.S., Xu Q., Griendling K.K. Reactive oxygen species in metabolic and inflammatory signaling. Circ Res 2018; 122: 877-902. doi.org/10.1161/CIRCRESAHA.117.311401.; Yuan H., Zhang X., Huang X., Lu Y., Tang W., Man Y. et al. NADPH oxidase 2-derived reactive oxygen species mediate FFAs-induced dysfunction and apoptosis of beta-cells via JNK, p38 MAPK and p53 pathways. PLoS ONE 2010; 5: e15726. doi.org/10.1371/journal.pone.0015726.; Ma Y., Li W., Yin Y., Li W. AST IV inhibits H(2)O(2)-induced human umbilical vein endothelial cell apoptosis by suppressing Nox4 expression through the TGF-beta1/Smad2 pathway. Int. J. Mol. Med 2015; 35: 1667-1674. doi.org/10.3892/ijmm.2015.2188.; Xing Y., Lin Q., Tong Y., Zhou W., Huang J., Wang Y. et al. Abnormal neutrophil transcriptional signature may predict newly diagnosed latent autoimmune diabetes in adults of South China. Frontiers in endocrinology 2020; 11: 581902. doi.org/10.3389/fendo.2020.581902.; Азарова Ю.Э., Клёсова Е.Ю., Самгина Т.А., Сакали С.Ю., Коломоец И.И., Азарова В.А. и др. Роль полиморфных вариантов гена CYBA в патогенезе сахарного диабета 2 типа. Медицинская генетика 2019; 18(8): 37-48. doi.org/10.25557/2073-7998.2019.08.37-48.; Воробьева Н.В. NADPH-оксидаза нейтрофилов и заболевания, связанные с ее дисфункцией. Иммунология 2013; 34(4): 227-232.; Alfar E.A., Kirova D., Konantz J., Birke S., Mansfeld J., Ninov N. Distinct levels of reactive oxygen species coordinate metabolic activity with beta-cell mass plasticity. Scientific reports 2017; 7(1): 1-12. doi.org/10.1038/s41598-017-03873-9.; Matute J.D., Arias A.A., Wright N.A., Wrobel I., Waterhouse C.C., Li X.J. et al. A new genetic subgroup of chronic granulomatous disease with autosomal recessive mutations in p40 phox and selective defects in neutrophil NADPH oxidase activity. Blood, The Journal of the American Society of Hematology 2009; 114(15): 3309-3315. doi.org/10.1182/blood-2009-07-231498.; Olsson L.M., Lindqvist A.K., Källberg H., Padyukov L., Burkhardt H., Alfredsson L. et al. A case-control study of rheumatoid arthritis identifies an associated single nucleotide polymorphism in the NCF4 gene, supporting a role for the NADPH-oxidase complex in autoimmunity. Arthritis research and therapy 2007; 9(5): 1-11. doi.org/10.1186/ar2299.; Roberts R.L., Hollis-Moffatt J.E., Gearry R.B., Kennedy M.A., Barclay M.L., Merriman T.R. Confirmation of association of IRGM and NCF4 with ileal Crohn’s disease in a population-based cohort. Genes and Immunity 2008; 9(6): 561-565. doi.org/10.1038/gene.2008.49.; Ryan B.M., Zanetti K.A., Robles A.I., Schetter A.J., Goodman J., Hayes R.B. et al. Germline variation in NCF4, an innate immunity gene, is associated with an increased risk of colorectal cancer. International journal of cancer 2014; 134(6): 1399-1407. doi.org/10.1002/ijc.28457.; Gándara-Mireles J.A., Lares-Asseff I., Espinoza E.A.R., Blanco J.G., Font A.E.G., Hurtado L.P.C. et al. Association of genetic polymorphisms NCF4 rs1883112, CBR3 rs1056892, and ABCC1 rs3743527 with the cardiotoxic effects of doxorubicin in children with acute lymphoblastic leukemia. Pharmacogenetics and Genomics 2021; 31(5): 108-115. doi.org/10.1097/FPC.0000000000000428.; Медведева М.В. Ассоциации полиморфных вариантов rs2305948 и rs1870377 гена рецептора фактора роста сосудистого эндотелия 2 типа (KDR) с риском развития ишемической болезни сердца. Научные результаты биомедицинских исследований 2021; 7(1): 32-43. doi.org/10.18413/2658-6533-2020-7-1-0-3.; Meng H., Ruan J., Tian X., Li L., Chen W., Meng F. High retinoic acid receptor-related orphan receptor A gene expression in peripheral blood leukocytes may be related to acute myocardial infarction. Journal of International Medical Research 2021; 49(6): 1-13. doi.org/10.1177/03000605211019663.; Liu Y., Chen H., Mu D., Li D., Zhong Y., Jiang N. et al. Association of serum retinoic acid with risk of mortality in patients with coronary artery disease. Circulation research 2016; 119(4): 557-563. doi.org/10.1161/CIRCRESAHA.116.308781.

  10. 10
  11. 11
  12. 12
  13. 13
  14. 14
  15. 15
  16. 16
  17. 17
    Academic Journal

    Πηγή: Medical Genetics; Том 16, № 3 (2017); 33-36 ; Медицинская генетика; Том 16, № 3 (2017); 33-36 ; 2073-7998

    Περιγραφή αρχείου: application/pdf

    Relation: https://www.medgen-journal.ru/jour/article/view/248/196; Суслина ЗА, Варакин ЮЯ. Эпидемиологические аспекты изучения инсульта. Время подводить итоги. Анналы клинической и экспериментальной неврологии. 2007; 1(2): 22-28.; Bushueva OYu, Stetskaya TA, Vyalykh EK et al. An association study of A1166C polymorphism of the AGTR1 gene with cerebral stroke in Russian population of Central Russia. J. Clin. Exp. Med. Res. 2014; 2(2): 176-184.; Hernandez-Schulman I, Zhou MS, Raij L. Cross-talk between angiotensin II receptor types 1 and 2: Potential role in vascular remodeling in humans. Hypertension. 2007 Feb; 49(2): 270-271.; Balmforth AJ. Angiotensin II type 2 receptor gene polymorphisms in cardiovascular disease. Journals Renin Angiotensin Aldosterone System. 2010 Mar; 11(1): 79-85.; Usacheva MA, Nasedkina TV, Ikonnikova AIu et al. Association of polymophisms of Renin-Angiotensin and hemostasis system genes with ischemic stroke in Russians from Central Russia. Mol. Biol. 2012 Mar-Apr; 46(2): 214-223.; Стецкая ТА, Вялых EK, Булгакова ИВ и др. Исследование взаимосвязи I/D полиморфизма гена ACE с риском развития мозгового инсульта в популяции русских жителей Центрально-Черноземного региона России. Человек и его здоровье. 2014; (3): 33-36.; Stetskaia TA, Bushueva OIu, Bulgakova IV. Association of Т174М polymorphism of the angiotensinogen gene with the higher risk of cerebral stroke in women. Ter Arkh. 2014; 86(12): 66-71.; Ferrario CM. Role of angiotensin II in cardiovascular disease therapeutic implications of more than a century of research. Journal of the Renin-angiotensin-aldosterone System. 2006; 7(1): 3-14.; Hein L, Barsh GS, Pratt RE et al. Behavioural and cardiovascular effects of disrupting the angiotensin II type-2 receptor in mice. Nature. 1995 Oct; 377: 744-747.; Siragy HM, Inagami T, Ichiki T et al. Sustained hypersensitivity to angiotensin II and its mechanism in mice lacking the subtype-2 (AT2) angiotensin receptor. Proc Natl Acad Sci USA. 1999 May; 96(11): 6506-6510.; Lazard D, Briend-Sutren MM, Villageois P et al. Molecular characterization and chromosome localization of a human angiotensin II AT2 receptor gene highly expressed in fetal tissues. Receptors Channels. 1994; 2(4): 271-280.; Mukoyanna M, Nakajima M, Horiuchi M et al. Expression cloning of type-2 angiotensin II receptor reveals a unique class of 7-transmembrane receptors. J Biol Chem. 1993 Nov; 268(33): 24539-24542.; Warnecke C, Mugrauer P, Surder D et al. Intronic ANG II type 2 receptor gene polymorphism 1675 G/A modulates receptor protein expression but not mRNA splicing. Am J Physiol Regul Integr Comp Physiol. 2005 Dec; 289(6): 1729-1735.; Jalowy A, Schulz R, Dorge H et al. Infarct size reduction by AT1-receptor blockade through a signal cascade of AT2-receptor activation, bradykinin and prostaglandins in pigs. J Am Coll Cardiol. 1998 Nov; 32(6): 1787-1796.; Jones A, Dhamrait SS, Payne JR et al. Genetic variants of angiotensin II receptors and cardiovascular risk in hypertension. Hypertension. 2003 Oct; 42(4): 500-506.; Tousoulis D, Koumallos N, Antoniades C et al. Genetic polymorphism on type 2 receptor of angiotensin II, modifies cardiovascular risk and systemic inflammation in hypertensive males. Am J Hypertens. 2010 Mar; 23(3): 237-242.; Schmieder RE, Erdmann J, Delles C et al. Effect of the angiotensin II type 2-receptor gene (+1675 G/A) on left ventricular structure in humans. J Am Coll. Cardiol. 2001 Jan; 37(1): 175-182.

  18. 18
    Academic Journal

    Πηγή: Medical Genetics; Том 16, № 2 (2017); 37-39 ; Медицинская генетика; Том 16, № 2 (2017); 37-39 ; 2073-7998

    Περιγραφή αρχείου: application/pdf

    Relation: https://www.medgen-journal.ru/jour/article/view/221/183; Baird, D.D., Dunson, D.B., Hill, M.C., et al. High cumulative incidence of uterine leiomyoma in black and white women: ultrasound evidence // American journal of obstetrics and gynecology. 2003;188(1):100-107.; Стрижаков А.Н., Давыдов А.И., Пашков В.М. и др. Органосберегающее хирургическое лечение доброкачественных заболеваний матки // Вопросы гинекологии, акушерства и перинатологии. 2003; 2(3):.5-9.; Santulli, P., Borghese, B., Lemarеchal, H., et al. Increased serum oxidative stress markers in women with uterine leiomyoma // PloS one. 2013;8(8):e72069.; Fletcher, N.M., Saed, M.G., Abu-Soud, H.M., et al. Uterine fibroids are characterized by an impaired antioxidant cellular system: potential role of hypoxia in the pathophysiology of uterine fibroids // Journal of assisted reproduction and genetics. 2013;30(7):969-974. 5. Короткина, Р.Н., Мацкевич, Г.Н., Девликанова, А.Ш. Сравнительное исследование активности ферментов обмена глутатиона и антиоксидантных ферментов в злокачественных и доброкачественных опухолях человека // Бюлл экспер биол мед. 2002;133(6):697-700.; Behrend, L., Henderson, G., Zwacka, R.M. Reactive oxygen species in oncogenic transformation // Biochemical Society Transactions. 2003;31(6):1441-1444.; Maulik, N., Das, D.K. Redox signaling in vascular angiogenesis 1, 2 // Free Radical Biology and Medicine. 2002;33(8):1047-1060.; Burdon, R.H. Superoxide and hydrogen peroxide in relation to mammalian cell proliferation // Free Radical Biology and Medicine. 1995;18(4):775-794.; Townsend, D.M., Tew, K.D., Tapiero, H. The importance of glutathione in human disease // Biomedicine & Pharmacotherapy. 2003;57(3):145-155.; Webb, G.C., Vaska, V.L., Gali, R.R., et al. The gene encoding human glutathione synthetase (GSS) maps to the long arm of chromosome; at band 11.2 // Genomics. 1995;30(3):617-619.

  19. 19
    Academic Journal

    Πηγή: Medical Genetics; Том 16, № 4 (2017); 29-34 ; Медицинская генетика; Том 16, № 4 (2017); 29-34 ; 2073-7998

    Περιγραφή αρχείου: application/pdf

    Relation: https://www.medgen-journal.ru/jour/article/view/256/204; International Diabetes Federation. IDF Diabetes Atlas 7th Edition Brussels, Belgium. idf.org 2015:1-4.; Дедов ИИ, Шестакова МВ, Аметов АС и др. Инициация и интенсификация сахароснижающей терапии у больных сахарным диабетом 2 типа: обновление консенсуса совета экспертов Российской ассоциации эндокринологов (2015 г.) Сахарный диабет. 2015;18(1):5-23.; Аметов АС, Соловьева ОЛ. Окислительный стресс при сахарном диабете 2-го типа и пути его коррекции. Проблемы эндокринологии. 2011; 57(6):52-56.; Бондарь ИА, Шабельникова ОЮ. Генетические основы сахарного диабета 2 типа. Сахарный диабет. 2013;(4):11-16.; Flannick J, Florez JC. Type 2 diabetes: genetic data sharing to advance complex disease research. Nature Reviews Genetics. 2016;17(9):535-549.; Chang YC, Chuang LM. The role of oxidative stress in the pathogenesis of type 2 diabetes: from molecular mechanism to CIinical implication. Am J Transl Res. 2010; 2(3):316-331.; Flekac M, Skrha J, Hilgertova J et al. Gene polymorphisms of superoxide dismutases and catalase in diabetes mellitus. BMC medical genetics. 2008; 9(1):1.; Robertson RP, Harmon J, Tran PO et al. в-cell glucose toxicity, lipotoxicity, and chronic oxidative stress in type 2 diabetes. Diabetes. 2004; 53(suppl 1):S119-S124.; Калинина ЕВ, Чернов НН, Новичкова МД. Роль глутатиона, глутатионтрансферазы и глутаредоксина в регуляции редокс-зависимых процессов. Успехи биологических наук. 2014; (54):299-348.; Amer MA, Ghattas MH, Abo-ElMatty DM et al. Influence of glutathione S-transferase polymorphisms on type-2 diabetes mellitus risk. Genet Mol Res. 2011; 10(4):3722-3730.; Banerjee M, Vats P. Reactive metabolites and antioxidant gene polymorphisms in type 2 diabetes mellitus. Redox biology. 2014; (2):170-177.; Bid HK, Konwar R, Saxena M et al. Association of glutathione S-transferase (GSTM1, T1 and P1) gene polymorphisms with type 2 diabetes mellitus in north Indian population. Journal of postgraduate medicine. 2010; 56(3):176.; Manfredi S, Calvi D, del Fiandra M et al. Glutathione S-transferase T1-and M1-null genotypes and coronary artery disease risk in patients with Type 2 diabetes mellitus Cardiovasc. Pharmacogenomics. 2009; 10(1):29-34.; Yalin S, Hatungil R, Tamer L et al. Glutathione S-transferase gene polymorphisms in Turkish patients with diabetes mellitus. Cell biochemistry and function. 2007; 25(5):509-513.; Doney AS, Lee S, Leese GP et al. Increased Cardiovascular Morbidity and Mortality in Type 2 Diabetes Is Associated With the Glutathione S Transferase Theta-Null Genotype A Go-DARTS Study. Circulation. 2005; 111(22):2927-2934.; Hori M, Oniki K, Ueda K et al. Combined glutathione S-transferase T1 and M1 positive genotypes afford protection against type 2 diabetes in Japanese. Pharmacogenomics. 2007; 8(10):1307-1314.; Ramprasath T, Murugan PS, Prabakaran AD et al. Potential risk modifications of GSTT1, GSTM1 and GSTP1 (glutathione-S-transferases) variants and their association to CAD in patients with type-2 diabetes. Biochemical and biophysical research communications. 2011; 407(1):49-53.; Moasser E, Kazemi-Nezhad SR, Saadat M et al. Study of the association between glutathione S-transferase (GSTM1, GSTT1, GSTP1) polymorphisms with type II diabetes mellitus in southern of Iran. Molecular biology reports. 2012; 39(12):10187-10192.; Mathew CGP. The isolation of high molecular weight eukaryotic DNA. In Methods of Molecular Biology. 1984; (2):31-34.; Иванов ВП, Полоников АВ, Солодилова МА и др. Анализ ассоциации делеционных полиморфизмов генов глутатион-S-трансфераз GSTM1 и GSTT1 с предрасположенностью к бронхиальной астме и особенностями ее клинических проявлений в курской популяции. Человек и его здоровье. 2005; (3):49-55.; Zhao M, Lewis R, Gustafson DR et al. No apparent association of GSTP1 A313G polymorphism with breast cancer risk among postmenopausal Iowa women. Cancer Epidemiology Biomarkers & Prevention. 2001; 10(12)1301-1302.; Schlesselman JJ. Case-control studies: design, conduct, analysis. Oxford University Press, 1982.; Реброва ОЮ. Статистический анализ медицинских данных. Применение пакета прикладных программ Statistica. Dental science and practice. 2014; (1):43-47.; Polonikov A, Vialykh E, Vasil’eva O et al. Genetic variation in glutathione s-transferase genes and risk of nonfatal cerebral stroke in patients suffering from essential hypertension. Journal of Molecular Neuroscience. 2012; 47(3):511-513.; Tiedge M, Lortz S, Drinkgern J et al. Relation between antioxidant enzyme gene expression and antioxidant defense status of insulin-producing cells. Diabetes. 1997; 46(11):1733-1742.; Tonooka N, Oseid E, Harmon J et al. Glutathione peroxidase protein expression and activity in human islets isolated for transplantation. CIin Transplant 2007; 21:767-772.; Wright E, Scism-Bacon JL, Glass LC. Oxidative stress in type 2 diabetes: the role of fasting and postprandial glycaemia. Int J CIin Pract. 2006; 60(3):308-314.; Folli F, Corradi D, Fanti P et al. The role of oxidative stress in the pathogenesis of type 2 diabetes mellitus micro and macrovascular complications: avenues for a mechanistic-based therapeutic approach. Current Diabetes Reviews. 2011; 7(5):313-324.

  20. 20
    Academic Journal

    Πηγή: Medical Genetics; Том 16, № 3 (2017); 41-45 ; Медицинская генетика; Том 16, № 3 (2017); 41-45 ; 2073-7998

    Περιγραφή αρχείου: application/pdf

    Relation: https://www.medgen-journal.ru/jour/article/view/250/198; Belyalova NS, Belyalov FI. Faktory riska i profilaktika raka. Chast’ 1. Klinicheskaya meditsina. 2005;(11):17-21.; Barsukov YuA. Kolorektal’nyy rak. Problemy klinicheskoy meditsiny. 2006;(2):6.; Gil J, Gaj P, Misiak B et al. CYP1A1 Ile462Val polymorphism and colorectal cancer risk in Polish patients. //Medical Oncology. 2014;31(7):1-5.; Khan N, Afaq F, Mukhtar H. Lifestyle as risk factor for cancer: Evidence from human studies. //Cancer letters. 2010;293(2):133-143.; Landi S, Gemignani F, Moreno V et al. A comprehensive analysis of phase I and phase II metabolism gene polymorphisms and risk of colorectal cancer. //Pharmacogenetics and genomics. 2005;15(8):535-546.; Pande M, Amos CI, Osterwisch DR et al. Genetic variation in genes for the xenobiotic-metabolizing enzymes CYP1A1, EPHX1, GSTM1, GSTT1, and GSTP1 and susceptibility to colorectal cancer in Lynch syndrome. // Cancer Epidemiology Biomarkers & Prevention. 2008;17(9):2393-2401.; Little J, Sharp L, Masson LF et al. Colorectal cancer and genetic polymorphisms of CYP1A1, GSTM1 and GSTT1: A case-control study in the Grampian region of Scotland. // International journal of cancer. 2006;119(9):2155-2164.; Slattery ML, Samowtiz W, Ma K et al. CYP1A1, cigarette smoking, and colon and rectal cancer. // American Journal of Epidemiology. 2004;160(9):842-852.; Bae SY, Choi SK, Kim KR et al. Effects of genetic polymorphisms of MDR1, FMO3 and CYP1A2 on susceptibility to colorectal cancer in Koreans. // Cancer science. 2006;97(8): 774-779.; Eichholzer M, Rohrmann S, Barbir A et al. Polymorphisms in heterocyclic aromatic amines metabolism-related genes are associated with colorectal adenoma risk. // Int J Mol Epidemiol Genet. 2012;3(2):96-106.; Akiyama TE, Gonzalez FJ. Regulation of P450 genes by liver-enriched transcription factors and nuclear receptors. // Biochimica et Biophysica Acta (BBA)-General Subjects. 2003;1619(3):223-234.; Kang SH, Kim TY, Kim HY et al. Protective role of CYP1A1* 2A in the development of multiple myeloma. //Acta haematologica. 2008;119(1):60-64.; Nakachi K, Imai K, Hayashi SI et al. Polymorphisms of the CYP1A1 and glutathione S-transferase genes associated with susceptibility to lung cancer in relation to cigarette dose in a Japanese population. // Cancer Research. 1993;53(13):2994-2999.; Miyoshi Y, Takahashi Y, Egawa C et al. Breast cancer risk associated with CYP1A1 genetic polymorphisms in Japanese women. // The breast journal. 2002;8(4):209-215.; Krajinovic MPCHSCADD, Ghadirian P, Richer C et al. Genetic susceptibility to breast cancer in French-Canadians: Role of carcinogen-metabolizing enzymes and gene-environment interactions. // International journal of cancer. 2001;92(2):220-225.; Cote ML, Wenzlaff AS, Bock CH et al. Combinations of cytochrome P-450 genotypes and risk of early-onset lung cancer in Caucasians and African Americans: a population-based study. // Lung Cancer. 2007;55(3):255-262.; Lyakhovich VV, Vavilin VA, Gutkina NI i dr. Geny i fermenty sistemy metabolizma ksenobiotikov v onkopatologii. Voprosy meditsinskoy khimii. 1997;43(5):330-338.