-
1Academic Journal
Συγγραφείς: V. A. Korepanov, T. Yu. Rebrova, A. S. Gorbunov, S. A. Afanasiev, В. А. Корепанов, Т. Ю. Реброва, А. С. Горбунов, С. A. Афанасьев
Πηγή: Complex Issues of Cardiovascular Diseases; Том 11, № 4S (2022): приложение; 146-152 ; Комплексные проблемы сердечно-сосудистых заболеваний; Том 11, № 4S (2022): приложение; 146-152 ; 2587-9537 ; 2306-1278
Θεματικοί όροι: Крысы, Membrane microviscosity, Heart failure, Age, Rats, Микровязкость мембран, Сердечная недостаточность, Возраст
Περιγραφή αρχείου: application/pdf
Relation: https://www.nii-kpssz.com/jour/article/view/1280/742; Макаров С.А., Максимов С.А., Шаповалова Э.Б., Стряпчев Д.В., Артамонова Г.В. Смертность от болезней системы кровообращения в Кемеровской области и Российской Федерации в 2000–2016 годах. Комплексные проблемы сердечно-сосудистых заболеваний. 2019; 8 (2): 6-11. doI:10.17802/2306-1278-2019-8-2-6-11; Поляков Д.С., Фомин И.В., Беленков Ю.Н., Мареев В.Ю., Агеев Ф.Т., Артемьева Е.Г., Бадин Ю.В., Бакулина Е.В., Виноградова Н.Г., Галявич А.С., Ионова Т.С., Камалов Г.М., Кечеджиева С.Г., Козиолова Н.А., Маленкова В.Ю., Мальчикова С.В., Мареев Ю.В., Смирнова Е.А., Тарловская Е.И., Щербинина Е.В., Якушин С.С. Хроническая сердечная недостаточность в Российской Федерации: что изменилось за 20 лет наблюдения? Результаты исследования ЭПО-ХА-ХСН. Кардиология. 2021;61(4):4-14. doi.org/10.18087/cardio.2021.4.n1628; Choi H., Park M., Youn J. Update on heart failure management and future directions. Korean J Intern Med. 2019; 34 (1): 11-43. doi:10.3904/kjim.2018.428; Barasa A., Schaufelberger M., Lappas G., Swedberg K., Dellborg M., Rosengren A. Heart failure in young adults: 20-year trends in hospitalization, aetiology, and case fatality in Sweden. Eur Heart J. 2014; 35 (1): 25–32. doi:10.1093/eurheartj/eht278; Christiansen M.N., Køber L., Weeke P., Vasan R.S., Jeppesen J.L., Smith J.G., Gislason G.H., Torp-Pedersen C., Andersson C. Age-Specific Trends in Incidence, Mortality, an.d Comorbidities of Heart Failure in Denmark, 1995 to 2012. Circulation. 2017; 135 (13): 1214-1223. doi:10.1161/CIRCULATIONAHA.116.025941; Sheeran F.L., Pepe S. Mitochondrial Bioenergetics and Dysfunction in Failing Heart. Advances in Experimental Medicine and Biology. 2017; 982: 65-80. doi:10.1007/978-3-319-55330-6_4.; Teerlink J., Pfeffer J., Pfeffer M. Progressive Ventricular Remodeling in Response to Diffuse Isoproterenol-induced Myocardial Necrosis in Rats. Circulation Research. 1994; 75 (1): 105-113. doi:10.1161/01.res.75.1.105; Rebrova, T.Y., Korepanov V.A., Afanasiev S.A. Age Peculiarities of Respiratory Activity and Membrane Microviscosity of Mitochondria from Rat Cardiomyocytes. Bulletin of Experimental Biology and Medicine. 2021; 170 (3): 368-370. doi:10.1007/s10517-021-05069-8; Добрецов. Г.Е. Флуоресцентные зонды в исследовании клеток, мембран и липопротеинов. М.: Наука, 1989:277; Еремеев С.А., Ягужинский Л.С. О локальном сопряжении систем электронного транспорта и синтеза АТФ в митохондриях. Биохимия. 2015; 80 (5): 682-688. doi:10.1134/S0006297915050089]; Neubauer S. The failing heart--an engine out of fuel. N Engl J Med. 2007; 356 (11): 1140-51. doi:10.1056/NEJMra063052.; Bisaccia G., Ricci F., Gallina S., Di Baldassarre A., Ghinassi B. Mitochondrial Dysfunction and Heart Disease: Critical Appraisal of an Overlooked Association. International Journal of Molecular Sciences. 2021; 22 (2): 614. doi:10.3390/ijms22020614.; Roach C., Feller S.E., Ward J.A., Shaikh S.R., Zerouga M., Stillwell W. Comparison of cis and trans fatty acid containing phosphatidylcholines on membrane properties. Biochemistry. 2004; 43 (20): 6344–6351. doi:10.1021/bi049917r.; Rebrova T.Y., Afanasiev S.A. State of the Antioxidant System and the Severity of Lipid-Peroxidation Processes in the Myocardium and Blood Plasma of Rats of Different Ages with Postinfarction Cardiosclerosis. Advances in Gerontology. 2021; 11 (2): 152–157. doi:10.1134/S2079057021020132; Yi S., Yi J., Ohrr H. Total cholesterol and all-cause mortality by sex and age: a prospective cohort study among 12.8 million adults. Scientific Reports. 2019; 9: 1596. doi:10.1038/s41598-018-38461-y; Афанасьев С.А., Кондратьева Д.С., Путрова О.Д., Перчаткин В.А., Репин А.Н. Возрастные особенности внутриклеточного гомеостаза кальция в кардиомиоцитах крыс при постинфарктном ремоделировании сердца. Успехи геронтологии. 2010. 23 (1): 59–63.
-
2Academic Journal
Συγγραφείς: V. A. Korepanov, T. Yu. Rebrova, S. A. Afanasiev, В. А. Корепанов, Т. Ю. Реброва, С. А. Афанасьев
Συνεισφορές: The research was carried out within the fundamental research topic of the Cardiology Research Institute, Tomsk NRMC (No. АААА-А15-115123110026-3)., Исследование проведено в рамках темы фундаментальных научных исследований НИИ кардиологии Томского НИМЦ (№ АААА-А15-115123110026-3).
Πηγή: Bulletin of Siberian Medicine; Том 22, № 1 (2023); 51-56 ; Бюллетень сибирской медицины; Том 22, № 1 (2023); 51-56 ; 1819-3684 ; 1682-0363 ; 10.20538/1682-0363-2023-22-1
Θεματικοί όροι: крысы, membrane microviscosity, age-dependent changes, rats, микровязкость мембран, возраст-зависимые изменения
Περιγραφή αρχείου: application/pdf
Relation: https://bulletin.ssmu.ru/jour/article/view/5131/3348; Choi H., Park M., Youn J. Update on heart failure management and future directions. Korean J. Intern. Med. 2019;34(1):11– 43. DOI:10.3904/kjim.2018.428.; Barasa A., Schaufelberger M., Lappas G., Swedberg K., Dellborg M., Rosengren A. Heart failure in young adults: 20-year trends in hospitalization, aetiology, and case fatality in Sweden. Eur. Heart J. 2014;35(1):25–32. DOI:10.1093/eurheartj/eht278.; Christiansen M., Kober L., Weeke P., Vasan R., Jeppesen J., Smith J. et al. Age-specific trends in incidence, mortality, and comorbidities of heart failure in Denmark, 1995 to 2012. Circulation. 2017;135(13):1214–1223. DOI:10.1161/CIRCULATIONAHA.116.025941.; Rebrova T.Y., Korepanov V.A., Afanasiev S.A. Age peculiarities of respiratory activity and membrane microviscosity of mitochondria from rat cardiomyocytes. Bull. Exp. Biol. Med. 2021;170(3):368–370. DOI:10.1007/s10517-021-05069-8.; Casares D., Escribá P.V., Rosselló C.A. Membrane lipid composition: effect on membrane and organelle structure, function and compartmentalization and therapeutic avenues. Int. J. Mol. Sci. 2019;20(9):2167. DOI:10.3390/ijms20092167.; Teerlink J., Pfeffer J., Pfeffer M. Progressive ventricular remodeling in response to diffuse isoproterenol-induced myocardial necrosis in rats. Circ. Res. 1994;75(1):105–113. DOI:10.1161/01.res.75.1.105.; Добрецов Г.Е. Флуоресцентные зонды в исследовании клеток, мембран и липопротеинов. М.: Наука, 1989:277.; Еремеев С.А., Ягужинский Л.С. О локальном сопряжении систем электронного транспорта и синтеза АТФ в митохондриях. Биохимия. 2015;80(5):682–688.; Rebrova T.Y., Afanasiev S.A. State of the antioxidant system and the severity of lipidperoxidation processes in the myocardium and blood plasma of rats of different ages with postinfarction cardiosclerosis. Advances in Gerontology. 2021;11(2):152–157. DOI:10.1134/S2079057021020132.; Yang S., Kreutzberger А., Lee J. The role of cholesterol in membrane fusion. Chem. Phys. Lipids. 2016;199(1):136–143. DOI:10.1016/j.chemphyslip.2016.05.003.; Yi S., Yi J., Ohrr H. Total cholesterol and all-cause mortality by sex and age: a prospective cohort study among 12.8 million adults. Sci. Rep. 2019;9(1):1596. DOI:10.1038/s41598-01838461-y.; https://bulletin.ssmu.ru/jour/article/view/5131
-
3Academic Journal
Συγγραφείς: Yu. A. Markova, L. A. Belovezhets, V. N. Nurminsky, I. S. Kapustina, N. V. Ozolina, V. V. Gurina, A. L. Rakevich, A. V. Sidorov, Ю. А. Маркова, Л. А. Беловежец, В. Н. Нурминский, И. С. Капустина, Н. В. Озолина, В. В. Гурина, А. Л. Ракевич, А. В. Сидоров
Συνεισφορές: The work was carried out within the framework of the basic theme (Registration No. 121031300011-7).
Πηγή: Vavilov Journal of Genetics and Breeding; Том 26, № 6 (2022); 568-574 ; Вавиловский журнал генетики и селекции; Том 26, № 6 (2022); 568-574 ; 2500-3259 ; 10.18699/VJGB-22-6
Θεματικοί όροι: микровязкость мембран, colchicine, biof ilms, fatty acids, membrane microviscosity, колхицин, биопленки, жирные кислоты
Περιγραφή αρχείου: application/pdf
Relation: https://vavilov.elpub.ru/jour/article/view/3478/1646; Abreu A.C., McBain A.J., Simoes M. Plants as sources of new antimicrobials and resistance-modifying agents. Nat. Prod. Rep. 2012; 29(9):1007-1021. DOI 10.1039/c2np20035j.; Bligh E.G., Dyer W.J. A rapid method of total lipid extraction and purification. Can. J. Biochem. Physiol. 1959;37:911-917.; Bybin V.A., Turskaya A.L., Maksimova L.A., Markova Yu.A. Evaluation of the influence of some alkaloids on biofilm formation by different bacterial species. In: Proceedings of the Annual Meeting of the Society of Plant Physiologists of Russia, the All-Russia Scientific Conference with International Participation, and the School of Young Scientists. Irkutsk: Sochava Institute of Geography of the Siberian Branch of the Russian Academy of Sciences, 2018;1206-1209. DOI 10.31255/978-5-94797-319-8-1206-1209. (in Russian); Christie W.W. Preparation of ester derivatives of fatty acids for chromatographic analysis. In: Christie W.W. Advances in Lipid Methodology – Two. Dundee: Oily Press, 1993;69-111.; de Carvalho C.C., Marques M.P., Hachicho N., Heipieper H.J. Rapid adaptation of Rhodococcus erythropolis cells to salt stress by synthesizing polyunsaturated fatty acids. Appl. Microbiol. Biotechnol. 2014;98(12):5599-5606. DOI 10.1007/s00253-014-5549-2.; de Carvalho C.C., Parreño-Marchante B., Neumann G., Da Fonseca M.M.R., Heipieper H.J. Adaptation of Rhodococcus erythropolis DCL14 to growth on n-alkanes, alcohols and terpenes. Appl. Microbiol. Biotechnol. 2005;67(3):383-388. DOI 10.1007/s00253-004-1750-z.; Dubey K.K., Jawed A., Haque S. Structural and metabolic correlation for Bacillus megaterium ACBT03 in response to colchicine biotransformation. Microbiology. 2011;80(6):758-767. DOI 10.1134/S0026261711060099.; Dubois-Brissonnet F., Trotier E., Briandet R. The biofilm lifestyle involves an increase in bacterial membrane saturated fatty acids. Front. Microbiol. 2016;7:1673. DOI 10.3389/fmicb.2016.01673.; Efimova S.S., Schagina L.V., Ostroumova O.S. Investigation of channel-forming activity of polyene macrolide antibiotics in planar lipid bilayers in the presence of dipole modifiers. Acta Naturae. 2014; 6(4(23)):67-79. DOI 10.32607/20758251-2014-6-4-67-79.; Glantz S. Primer of Biostatistics. McGraw-Hill Publ., 1991.; Guidelines for the Experimental (Preclinical) Study of New Pharmacological Substances. Moscow: Remedium Publ., 2000. (in Russian); Li C., Zhang C., Song G., Liu H., Sheng G., Ding Z., Wang Z., Sun Y., Xu Y., Chen J. Characterization of a protocatechuate catabolic gene cluster in Rhodococcus ruber OA1 involved in naphthalene degradation. Ann. Microbiol. 2016;66(1):469-478. DOI 10.1007/s13213-015-1132-z.; Nurminsky V.N., Nesterkina I.S., Spiridonova E.V., Ozolina N.V., Rakevich A.L. Identification of sterol-containing domains in vacuolar membranes by confocal microscopy. Biochemistry (Moscow). Supplement Series A: Membrane and Cell Biology. 2017;11(4):296-300. DOI 10.1134/S1990747817040080.; Nurminsky V.N., Ozolina N.V., Nesterkina I.S., Kolesnikova E.V., Salyaev R.K., Rakevich A.L., Martynovich E.F., Pilipchenko A.A., Chernyshov M.Y. Peculiar properties of some components in a plant cell vacuole morphological structure revealed by confocal microscopy. Cell Tiss. Biol. 2015;9(5):406-414. DOI 10.1134/S1990519X15050090.; Ozolina N.V., Gurina V.V., Nesterkina I.S., Dudareva L.V., Katyshev A.I., Nurminsky V.N. Fatty acid composition of total lipids in vacuolar membrane under abiotic stress. Biologicheskiye Membrany = Biological Membranes. 2017;34(1):63-69. DOI 10.7868/S0233475517010078. (in Russian); Petrushin I.S., Markova Yu.A., Karepova M.S., Zaytseva Yu.V., Belovezhets L.A. Complete genome sequence of Rhodococcus qingshengii strain VKM Ac-2784D, isolated from Elytrigia repens rhizosphere. Microbiol. Resour. Announc. 2021;10(11):e00107-21. DOI 10.1128/MRA.00107-21.; Rodrigues C.J.C., de Carvalho C.C.C.R. Rhodococcus erythropolis cells adapt their fatty acid composition during biofilm formation on metallic and non-metallic surfaces. FEMS Microbiol. Ecol. 2015; 91(12):fiv135. DOI 10.1093/femsec/fiv135.; Shaginyan I.A., Danilina G.A., Chernukha М.Yu., AIekseeva G.V., Batov A.B. Biofilm formation by strains of Burkholderia cepacia complex in dependence of their phenotypic and genotypic characteristics. Zhurnal Mikrobiologii, Epidemiologii i Immunobiologii = Journal of Microbiology, Epidemiology, and Immunobiology. 2007; 1:3-9. (in Russian); Sutcliffe I.C. Cell envelope composition and organisation in the genus Rhodococcus. Antonie Van Leeuwenhoek. 1998;74(1):49-58. DOI 10.1023/a:1001747726820.; Szőköl J., Rucká L., Šimčíková M., Halada P., Nešvera J., Pátek M. Induction and carbon catabolite repression of phenol degradation genes in Rhodococcus erythropolis and Rhodococcus jostii. Appl. Microbiol. Biotechnol. 2014;98(19):8267-8279. DOI 10.1007/s00253-014-5881-6.; Tegos G., Stermitz F.R., Lomovskaya O., Lewis K. Multidrug pump inhibitors uncover remarkable activity of plant antimicrobials. Antimicrob. Agents Chemother. 2002;46(10):3133-3141. DOI 10.1128/AAC.46.10.3133-3141.2002.; Wang C., Chen Y., Zhou H., Li X., Tan Z. Adaptation mechanisms of Rhodococcus sp. CNS16 under different temperature gradients: Physiological and transcriptome. Chemosphere. 2020;238:124571. DOI 10.1016/j.chemosphere.2019.124571.; Zhang W., Zhou Q.M., Du G.H. Colchicine. In: Du G.H. Natural Small Molecule Drugs from Plants. Singapore: Springer, 2018;503-507. DOI 10.1007/978-981-10-8022-7_83.; https://vavilov.elpub.ru/jour/article/view/3478
-
4Academic Journal
Συγγραφείς: I. N. Semenenya, A. A. Astrouski, A. V. Shuriberko, Yu. E. Razvodovsky, И. Н. Семененя, А. А. Островский, А. В. Шуриберко, Ю. Е. Разводовский
Πηγή: Doklady of the National Academy of Sciences of Belarus; Том 64, № 5 (2020); 583-589 ; Доклады Национальной академии наук Беларуси; Том 64, № 5 (2020); 583-589 ; 2524-2431 ; 1561-8323 ; 10.29235/1561-8323-2020-64-5
Θεματικοί όροι: активность метаболизма, fatty acids, high density lipoproteins, very low density and low density lipoproteins, urgent adaptation processes, cellular membrane microviscosity, metabolism activity, жирные кислоты, липопротеины высокой плотности, липопротеины очень низкой и низкой плотности, острый стресс, процессы срочной адаптации, микровязкость клеточных мембран
Περιγραφή αρχείου: application/pdf
Relation: https://doklady.belnauka.by/jour/article/view/917/914; Burstein, M. Sur un dosage rapide du cholesterol lie aux a-et aux в-lipoproteines du serum / M. Burstein, J. Samaille //Clinica Chimica Acta. - 1960. - Vol. 5, N 4. - P. 609-613. https://doi.org/10.1016/0009-8981(60)90075-9; Газохроматографический метод определения спектра свободных жирных кислот в плазме крови / Е. Т. Гнеушев [и др.] // Лабораторное дело. - 1979. - № 1. - С. 29-33.; The HDL hypothesis: does high-density lipoprotein protect from atherosclerosis? / M. Vergeer [et al.] // Journal of Lipid Research. - 2010. - Vol. 51, N 8. - P. 2058-2073. https://doi.org/10.1194/jlr.r001610; Холестериноз / Ю. М. Лопухин [и др.]. - Москва, 1983. - 352 с.; Rohrl, C. Cholesterol metabolism - physiological regulation and pathophysiological deregulation by the endoplasmic reticulum / C. Rohrl, H. Stangl // Wiener Medizinische Wochenschrift. - 2018. - Vol. 168, N 11-12. - P 280-285. https://doi.org/10.1007/s10354-018-0626-2; Casares, D. Membrane Lipid Composition: Effect on Membrane and Organelle Structure, Function and Compartmentalization and Therapeutic Avenues / D. Casares, P V. Escriba, C. A. Rossello // International Journal of Molecular Sciences. -2019. - Vol. 20, N 9. - P. 2167-2197. https://doi.org/10.3390/ijms20092167; Wang, Y. Effects of aerobic exercise on lipids and lipoproteins / Y. Wang, D. Xu // Lipids in Health and Disease. -2017. - Vol. 16, N 1. - P. 132-140. https://doi.org/10.1186/s12944-017-0515-5; Chronic stress: a critical risk factor for atherosclerosis / B. Yao [et al.] // Journal of International Medical Research. -2019. - Vol. 47, N 4. - P. 1429-1440. https://doi.org/10.1177/0300060519826820; Висмонт, Ф. И. Центральные адренергические и холинергические механизмы регуляции обмена липопротеидов и уровня СЖК в крови при перегревании / Ф. И. Висмонт, Н. А. Башаркевич // Физиология и фармакология терморегуляции. - Минск, 1985. - С. 176-186.; Hannon, B. A. Nutrigenetic Contributions to Dyslipidemia: A Focus on Physiologically Relevant Pathways of Lipid and Lipoprotein Metabolism / B. A. Hannon, N. Khan, M. Teran-Garcia // Nutrients. - 2018. - Vol. 10, N 10. - P. 1404-1421. https://doi.org/10.3390/nu10101404; The mechanism of dietary cholesterol effects on lipids metabolism in rats / Y.-M. Wang [et al.] // Lipids in Health and Disease. - 2010. - Vol. 9, N 1. - P. 4. https://doi.org/10.1186/1476-511x-9-4; Weissglas-Volkov, D. Genetic causes of high and low serum HDL-cholesterol / D. Weissglas-Volkov, P. Pajukanta // Journal of Lipid Research. - 2010. - Vol. 51, N 8. - P. 2032-2057. https://doi.org/10.1194/jlr.r004739; Palmisano, B. T. Role of Estrogens in the Regulation of Liver Lipid Metabolism / B. T. Palmisano, L. Zhu, J. M. Stafford // Sex and Gender Factors Affecting Metabolic Homeostasis, Diabetes and Obesity. - 2017. - Vol. 1043. -P. 227-256. https://doi.org/10.1007/978-3-319-70178-3_12; High density lipoprotein metabolism in low density lipoprotein receptor-deficient mice / F. Rinninger [et al.] // Journal of Lipid Research. - 2014. - Vol. 55, N 9. - P. 1914-1924. https://doi.org/10.1194/jlr.m048819; Lipid Droplets in Health and Disease / G. Onal [et al.] // Lipids in Health and Disease. - 2017. - Vol. 16, N 1. -P. 128-143. https://doi.org/10.1186/s12944-017-0521-7; https://doklady.belnauka.by/jour/article/view/917
-
5Academic Journal
Συγγραφείς: N. T. Kartel, L. V. Ivanov, A. N. Lyapunov, O. A. Nardid, Ya. O. Cherkashina, E. V. Shcherbak, O. A. Gurova, A. V. Okotrub
Πηγή: Хімія, фізика та технологія поверхні, Vol 10, Iss 3 (2019)
Θεματικοί όροι: наночастицы, спиновые зонды, микровязкость мембран, графен, нанотрубки, нанохорны, Chemistry, QD1-999, Physics, QC1-999
Περιγραφή αρχείου: electronic resource
Relation: https://cpts.com.ua/index.php/cpts/article/view/517; https://doaj.org/toc/2079-1704; https://doaj.org/toc/2518-1238
Σύνδεσμος πρόσβασης: https://doaj.org/article/78cd0f23c31c4a58a2702ad0ad1fbaf7
-
6Academic Journal
Συγγραφείς: N. T. Kartel, L. V. Ivanov, A. N. Lyapunov, O. A. Nardid, Ya. O. Cherkashina, E. V. Shcherbak, O. A. Gurova, A. V. Okotrub
Πηγή: Хімія, фізика та технологія поверхні, Vol 10, Iss 2 (2019)
Θεματικοί όροι: метод спиновых зондов, мембраны эритроцитов, детонационные наноалмазы, микровязкость мембран, синглет, антиоксидантная активность, Chemistry, QD1-999, Physics, QC1-999
Περιγραφή αρχείου: electronic resource
Relation: https://cpts.com.ua/index.php/cpts/article/view/505; https://doaj.org/toc/2079-1704; https://doaj.org/toc/2518-1238
Σύνδεσμος πρόσβασης: https://doaj.org/article/d069d18883114898a19d90321722df35
-
7Academic Journal
Συγγραφείς: Yu. M. Harmaza, A. V. Tamashevski, E. I. Slobozhanina, Ю. М. Гармаза, А. В. Тамашевский, Е. И. Слобожанина
Συνεισφορές: BRFFR, grant Б17-128, БРФФИ, грант № Б17-128
Πηγή: Doklady of the National Academy of Sciences of Belarus; Том 63, № 1 (2019); 72-78 ; Доклады Национальной академии наук Беларуси; Том 63, № 1 (2019); 72-78 ; 2524-2431 ; 1561-8323 ; 10.29235/1561-8323-2019-63-1
Θεματικοί όροι: лимфоциты человека, lipid bilayer microviscosity, a structural state of membrane proteins, human lymphocytes, микровязкость липидного бислоя, структурное состояние мембранных белков
Περιγραφή αρχείου: application/pdf
Relation: https://doklady.belnauka.by/jour/article/view/587/592; Xiong, H. M. ZnO nanoparticles applied to bioimaging and drug delivery / H. M. Xiong // Adv. Mater. - 2013. -Vol. 25, N 37. - P. 5329-5335. https://doi.org/10.1002/adma.201301732; Imaging of zinc oxide nanoparticle penetration in human skin in vitro and in vivo / A. V. Zvyagin [et al.] // J. Biomed. Opt. - 2008. - Vol. 13, N 6. - P. 064031. https://doi.org/10.1117/L3041492; Ultrasensitive detection of cytokines enabled by nanoscale ZnO arrays / V. Adalsteinsson [et al.] // Anal. Chem. -2008. - Vol. 80, N 17. - P. 6594-6601. https://doi.org/10.1021/ac800747q; Predictive value of in vitro assays depends on the mechanism of toxicity of metal oxide nanoparticles / W. S. Cho [et al.] // Part Fibre. Toxicol. - 2013. - Vol. 10, N 1. - P. 55. https://doi.org/10.1186/1743-8977-10-55; Application of short-term inhalation studies to assess the inhalation toxicity of nanomaterials / R. Landsiedel [et al.] // Part Fibre Toxicol. - 2014. - Vol. 11, N 1. - P. 16. https://doi.org/10.1186/1743-8977-11-16; Toxicity assessment of zinc oxide nanoparticles using sub-acute and sub-chronic murine inhalation models / A. Adam-cakova-Dodd [et al.] // Part Fibre Toxicol. - 2014. - Vol. 11, N 1. - P. 15. https://doi.org/10.1186/1743-8977-11-15; Particulate nature of inhaled zinc oxide nanoparticles determines systemic effects and mechanisms of pulmonary inflammation in mice / J. K. Chen [et al.] // Nanotoxicology. - 2014. - Vol. 9, N 1. - P. 43-53. https://doi.org/10.3109/17435390.2014.886740; In vitro mechanistic study towards a better understanding of ZnO nanoparticle toxicity / T. Buerki-Thurnherr [et al.] // Nanotoxicology. - 2012. - Vol. 7, N 4. - P. 402-416. https://doi.org/10.3109/17435390.2012.666575; Acute exposure to ZnO nanoparticles induces autophagic immune cell death / B. M. Johnson [et al.] // Nanotoxicology. -2014. - Vol. 9, N 6. - P. 737-748. https://doi.org/10.3109/17435390.2014.974709; Zinc oxide nanoparticle induced autophagic cell death and mitochondrial damage via reactive oxygen species generation / K. N. Yu [et al.] // Toxicol. in Vitro. - 2013. - Vol. 27, N 4. - P. 1187-1195. https://doi.org/10.1016/j.tiv.2013.02.010; Evaluation of the cytotoxic and inflammatory potential of differentially shaped zinc oxide nanoparticles / B. C. Heng [et al.] // Arch. Toxicol. - 2011. - Vol. 85, N 12. - P. 1517-1528. https://doi.org/10.1007/s00204-011-0722-1; Effects of surface-modifying ligands on the colloidal stability of ZnO nanoparticle dispersions in vitro cytotoxicity test media / D. Kwon [et al.] // Int. J. Nanomedicine. - 2014. - Vol. 9, N 2. - P. 57-65. https://doi.org/10.2147/ijn.s57924; Jiang, W. Bacterial toxicity comparison between nanoand micro-scaled oxide particles / W. Jiang, H. Mashayekhi, B. Xing // Environ. Pollut. - 2009. - Vol. 157, N 5. - P. 1619-1625. https://doi.org/10.1016/j.envpol.2008.12.025; Optical, nanostructural, and biophysical properties of Zn-induced changes in human erythrocyte membranes / A. Ya. Khairullina [et al.] // Optics and Spectroscopy. - 2011. - Vol. 110, N 4. - P. 534-540. https://doi.org/10.1134/s0030400x11040138; Harmaza, Y. M. Zinc essentiality and toxicity. Biophysical aspects / Y. M. Harmaza, E. I. Slobozhanina // Biophysics. -2014. - Vol. 59, N 2. - P. 264-275. https://doi.org/10.1134/s0006350914020092; https://doklady.belnauka.by/jour/article/view/587
-
8
-
9
-
10Academic Journal
Συγγραφείς: Чернявских, С. Д., Коваленко, А. Д.
Θεματικοί όροι: биология, физиология животных, кровь, ядерные эритроциты, плазматическая мембрана, относительная микровязкость, температура, сорбционная способность, позвоночные животные
Διαθεσιμότητα: http://dspace.bsu.edu.ru/handle/123456789/30692
-
11Academic Journal
Συγγραφείς: Осочук, С., Марцинкевич, А.
Θεματικοί όροι: МЕМБРАНЫ ЭРИТРОЦИТОВ, ЛИПОПРОТЕИНЫ, МИКРОВЯЗКОСТЬ, ЖИРНЫЕ КИСЛОТЫ
Περιγραφή αρχείου: text/html
-
12Academic Journal
Συγγραφείς: Буковцова, И. С., Леонтьева, Ю. В., Нгуен Тхи Хоа
Θεματικοί όροι: биология, физиология животных, кровь, эритроциты, микровязкость мембраны, температурный фактор, Hypophthalmichthys molitrix, толстолобик белый
Διαθεσιμότητα: http://dspace.bsu.edu.ru/handle/123456789/21854
-
13Academic Journal
Συγγραφείς: N. A. Isutina
Πηγή: Бюллетень сибирской медицины, Vol 12, Iss 3, Pp 37-40 (2013)
Θεματικοί όροι: пуповинная кровь, эритроциты, герпетическая инфекция, полиненасыщенные жирные кислоты, микровязкость мембраны, Medicine
Relation: https://bulletin.ssmu.ru/jour/article/view/337; https://doaj.org/toc/1682-0363; https://doaj.org/toc/1819-3684; https://doaj.org/article/7590cbceebd6493db5772caa99a33322
-
14Academic Journal
Συγγραφείς: Ишутина, Наталия
Θεματικοί όροι: ПУПОВИННАЯ КРОВЬ, ЭРИТРОЦИТЫ, ГЕРПЕТИЧЕСКАЯ ИНФЕКЦИЯ, ПОЛИНЕНАСЫЩЕННЫЕ ЖИРНЫЕ КИСЛОТЫ, МИКРОВЯЗКОСТЬ МЕМБРАНЫ
Περιγραφή αρχείου: text/html
-
15Academic Journal
Συγγραφείς: Осочук, С., Марцинкевич, А.
Θεματικοί όροι: ФИЗИКО-ХИМИЧЕСКИЕ СВОЙСТВА, МЕМБРАНА ЭРИТРОЦИТА, МИКРОПОЛЯРНОСТЬ, МИКРОВЯЗКОСТЬ, ПИРЕН
Περιγραφή αρχείου: text/html
-
16Academic Journal
ВЗАИМОДЕЙСТВИЕ СИНТЕТИЧЕСКИХ ПРОИЗВОДНЫХ ВИТАМИНА Е НА РЕОЛОГИЧЕСКИЕ СВОЙСТВА ЭРИТРОЦИТАРНЫХ МЕМБРАН
Συγγραφείς: Панин, Лев, Мокрушников, Павел
Θεματικοί όροι: МИКРОВЯЗКОСТЬ МЕМБРАН, ПЕРЕКИСНОЕ ОКИСЛЕНИЕ ЛИПИДОВ, ТИОФАН
Περιγραφή αρχείου: text/html
-
17Academic Journal
Συγγραφείς: Буковцова, И. С., Чернявских, С. Д., Леонтьева, Ю. В.
Θεματικοί όροι: биология, физиология животных, кровь, микровязкость мембраны, эритроциты, цыплята-бройлеры, кормовые добавки, лизина сульфат
Διαθεσιμότητα: http://dspace.bsu.edu.ru/handle/123456789/21856
-
18Academic Journal
Συγγραφείς: Чернявских, С. Д., Буковцова, И. С., Адамова, В. В., Бархатов, А. С.
Θεματικοί όροι: биология, физиология животных, кровь, клетки крови, эритроциты, эритроцитарная мембрана, температура, микровязкость, инкубация, Cyprinus carpios
Διαθεσιμότητα: http://dspace.bsu.edu.ru/handle/123456789/21853
-
19Academic Journal
Συγγραφείς: Чернявских, С. Д., Буковцова, И. С., Нгуен Тхи Тьук, То Тхи Бик Тхуи
Θεματικοί όροι: биология, физиология животных, кровь, гемоциты, эритроциты, эритроцитарная мембрана, микровязкость, температура, лягушка озерная, Rana ridibunda Pall
Διαθεσιμότητα: http://dspace.bsu.edu.ru/handle/123456789/21850
-
20Academic Journal
Συγγραφείς: Lutsenko M.T., Andrievskaya I.A., Ishutina N.A.
Πηγή: Annals of the Russian academy of medical sciences; Vol 67, No 6 (2012); 66-72 ; Вестник Российской академии медицинских наук; Vol 67, No 6 (2012); 66-72 ; 2414-3545 ; 0869-6047 ; 10.15690/vramn676
Θεματικοί όροι: pregnancy, micro viscousity, erythrocytes, deformation, membrane, беременность, микровязкость, эритроциты, клеточные мембраны
Περιγραφή αρχείου: application/pdf