Εμφανίζονται 1 - 20 Αποτελέσματα από 61 για την αναζήτηση '"ИММУНОЛОГИЧЕСКИЕ ИССЛЕДОВАНИЯ"', χρόνος αναζήτησης: 0,81δλ Περιορισμός αποτελεσμάτων
  1. 1
  2. 2
  3. 3
  4. 4
    Academic Journal

    Πηγή: National Journal glaucoma; Том 21, № 4 (2022); 3-12 ; Национальный журнал Глаукома; Том 21, № 4 (2022); 3-12 ; 2311-6862 ; 2078-4104

    Περιγραφή αρχείου: application/pdf

    Relation: https://www.glaucomajournal.ru/jour/article/view/411/389; Tham Y.C., Li X., Wong T.Y., Quigley, H. A. et al. Global prevalence of glaucoma and projections of glaucoma burden through 2040: a systematic review and meta-analysis. Ophthalmology 2014; 121(11):2081-2090. https://doi.org/10.1016/j.ophtha.2014.05.013; Зуева М.В. Динамика гибели ганглиозных клеток сетчатки при глаукоме и ее функциональные маркеры. Национальный журнал глаукома 2016; 15(1):70-85.; Agarwal R., Gupta S.K., Agarwal P., Saxena R. et al. Current concepts in the pathophysiology of glaucoma. Indian J Ophthalmol 2009; 57(4):257-266. https://doi.org/10.4103/0301-4738.53049; Kaushik S., Pandav S.S., Ram J. Neuroprotection in glaucoma. J Postgrad Med 2003;49(1):90-95. https://doi.org/10.4103/0022-3859.917; Иомдина Е.Н., Киселева О.А., Назаренко Л.А., Игнатьева Н.Ю., Баграташвили В.Н. Влияние биомеханических свойств корнеосклеральной капсулы глаза на гидродинамику внутриглазной жидкости. Биомедицина 2012; 1(3):25-30.; Flammer J., Haefliger I.O., Orgul S., Resink T. et al. Vascular dysregulation: a principal risk factor for glaucomatous damage? J Glaucoma 1999; 8(3):212-219.; Wiggs J.L., Pasquale L.R. Genetics of glaucoma. Hum Mol Genet 2017; 26(R1):R21-R27. https://doi.org/10.1093/hmg/ddx184; Wei X., Cho K.S., Thee E.F., Jager M.J. et al. Neuroinflammation and microglia in glaucoma: time for a paradigm shift. J Neurosci Res 2019; 97(1):70-76. https://doi.org/10.1002/jnr.24256; Vidal-Villegas B., Burgos-Blasco B., Santiago Alvarez J.L., Espino-Paisan L. et al. Proinflammatory cytokine profile differences between primary open-angle and pseudoexfoliative glaucoma. Ophthalmic Res 2022; 65(1):111-120. https://doi.org/10.1159/000519816; Kokubun T., Tsuda S., Kunikata H., Yasuda M. et al. Characteristic profiles of inflammatory cytokines in the aqueous humor of glaucomatous eyes. Ocul Immunol Inflamm 2018; 26(8):1177-1188. https://doi.org/10.1080/09273948.2017.1327605; Слепова О.С., Арапиев М.У., Ловпаче Д.Н., Балацкая Н.В., Куликова И.Г. Особенности местного и системного цитокинового статуса у здоровых разного возраста и пациентов с начальной стадией первичной открытоугольной глаукомы. Национальный журнал глаукома 2016; 15(1):3-12. https://doi.org/10.1097/00004647-199605000-00004; Балацкая Н. В., Петров С. Ю., Котелин В. И., Куликова И.Г. Локальная и системная продукция 47 цитокинов у пациентов с продвинутыми стадиями первичной открытоугольной глаукомы. Современные проблемы науки и образования 2021; 3. https://doi.org/10.17513/spno.30906; Кириллова М.О., Журавлева А.Н., Зуева М.В., Цапенко И.В. Структурно-функциональные корреляции в препериметрической и начальной стадиях глаукомной оптической нейропатии. Российский офтальмологический журнал 2021; 14(2):14-22. https://doi.org/10.21516/2072-0076-2021-14-2-14-22.; Котелин В.И., Зуева М.В., Цапенко И.В., Петров С.Ю., Журавлева А.Н. Электрофизиологические маркеры развитых стадий глаукомной оптической нейропатии. Российский офтальмологический журнал 2021; 14(3):19-24. https://doi.org/10.21516/2072-0076-2021-14-3-19-24; Котелин В.И., Петров С.Ю., Журавлева А.И., Зуева М.В., Цапенко И.В. Структурно-функциональные корреляции у пациентов с продвинутыми стадиями первичной открытоугольной глаукомы. Офтальмология 2021; 18(2):266-275. https://doi.org/10.18008/1816-5095-2021-2-266-275; Егоров Е.А. Глаукома. Национальное руководство. Москва: ГЭО-ТАР-Медиа 2014; 824.; Burgos-Blasco B., Vidal-Villegas B., Saenz-Frances F., Morales-Fernandez L. et al. Tear and aqueous humour cytokine profile in primary open-angle glaucoma. Acta Ophthalmol 2020; 98(6):e768-e772. https://doi.org/10.1111/aos.14374; Park D.Y., Kim M., Cha S.C. Cytokine and Growth Factor Analysis in Exfoliation Syndrome and Glaucoma. Invest Ophthalmol Vis Sci 2021; 62(15):6. https://doi.org/10.1167/iovs.62.15.6; Ebneter A., Casson R. J., Wood J. P., Chidlow G. Microglial activation in the visual pathway in experimental glaucoma: spatiotemporal characterization and correlation with axonal injury. Investigative ophthalmology & visual science 2020; 51(12):6448-6460. https://doi.org/10.1167/iovs.10-5284; Margeta M.A., Lad E.M., Proia A.D. CD163+ macrophages infiltrate axon bundles of postmortem optic nerves with glaucoma. Graefes Arch Clin Exp Ophthalmol 2018; 256(12):449-2456. https://doi.org/10.1007/s00417-018-4081-y; Jacques C., Gosset M., Berenbaum F., Gabay C. The role of IL-1 and IL-1Ra in joint inflammation and cartilage degradation. Vitam Horm 2006; 74:371-403. https://doi.org/10.1016/S0083-6729(06)74016-X.; Tezel G., Wax M.B. Increased production of tumor necrosis factoralpha by glial cells exposed to simulated ischemia or elevated hydrostatic pressure induces apoptosis in cocultured retinal ganglion cells. J Neurosci 2000; 20(23):8693-8700. https://doi.org/10.1523/JNEUROSCI.20-23-08693.2000; Tezel G., Yang X. Caspase-independent component of retinal ganglion cell death, in vitro. Invest Ophthalmol Vis Sci 2004; 45(11):4049-4059. https://doi.org/10.1167/iovs.04-0490; Wang J.J., Williams W., Wang B., Wei J. et al. Cytotoxic effect of inter-leukin-8 in retinal ganglion cells and its possible mechanisms. Int J Ophthalmol 2018; 11(8):1277-1283. https://doi.org/10.18240/ijo.2018.08.05; Ha Y., Liu H., Xu Z., Yokota H. et al. Endoplasmic reticulum stress-regulated CXCR3 pathway mediates inflammation and neuronal injury in acute glaucoma. Cell Death Dis 2015; 6:e1900. https://doi.org/10.1038/cddis.2015.281.; He X., Li M. The expression of EGF mRNA and EGF receptors in human trabecular meshwork cells in vitro. Zhonghua Yan Ke Za Zhi 1997; 33(6):406-409.; Weidner K.M., Hartmann G., Naldini L., Comoglio P.M. Molecular characteristics of HGF-SF and its role in cell motility and invasion. EXS 1993; 65:311-328.; Foxton R.H., Finkelstein A., Vijay S., Dahlmann-Noor A. et al. VEGF-A is necessary and sufficient for retinal neuroprotection in models of experimental glaucoma. Am J Pathol 2013; 182(4):1379-1390. https://doi.org/10.1016/j.ajpath.2012.12.032; Nishijima K., Ng Y.S., Zhong L., Bradley J. et al. Vascular endothelial growth factor-A is a survival factor for retinal neurons and a critical neuroprotectant during the adaptive response to ischemic injury. Am J Pathol 2007; 171(1):53-67. https://doi.org/10.1016/j.ajpath.2012.12.032; Mackenzie F., Ruhrberg C. Diverse roles for VEGF-A in the nervous system. Development 2012; 139(8):1371-1380. https://doi.org/10.2353/ajpath.2007.061237; Fuchshofer R. The pathogenic role of transforming growth factor-beta2 in glaucomatous damage to the optic nerve head. Exp Eye Res 2011; 93(2):165-169. https://doi.org/10.1016/j.exer.2010.07.014; Prendes M.A., Harris A., Wirostko B.M., Gerber A.L. et al. The role of transforming growth factor beta in glaucoma and the therapeutic implications. Br J Ophthalmol 2013;97(6):680-686. https://doi.org/10.1136/bjophthalmol-2011-301132.; Wordinger R.J., Sharma T., Clark A.F. The role of TGF-beta2 and bone morphogenetic proteins in the trabecular meshwork and glaucoma. J Ocul Pharmacol Ther 2014; 30(2-3):154-162. https://doi.org/10.1089/jop.2013.0220; https://www.glaucomajournal.ru/jour/article/view/411

  5. 5
    Academic Journal

    Συγγραφείς: Білоокий, B.

    Πηγή: Clinical anatomy and operative surgery; Vol. 6 No. 4 (2007); 21-24
    Клиническая анатомия и оперативная хирургия; Том 6 № 4 (2007); 21-24
    Клінічна анатомія та оперативна хірургія; Том 6 № 4 (2007); 21-24

    Περιγραφή αρχείου: application/pdf

    Σύνδεσμος πρόσβασης: http://kaos.bsmu.edu.ua/article/view/253681

  6. 6
    Academic Journal

    Συγγραφείς: Білоокий, B.

    Πηγή: Clinical anatomy and operative surgery; Vol. 6 No. 2 (2007); 32-35
    Клиническая анатомия и оперативная хирургия; Том 6 № 2 (2007); 32-35
    Клінічна анатомія та оперативна хірургія; Том 6 № 2 (2007); 32-35

    Περιγραφή αρχείου: application/pdf

    Σύνδεσμος πρόσβασης: http://kaos.bsmu.edu.ua/article/view/251079

  7. 7
  8. 8
  9. 9
    Academic Journal

    Συνεισφορές: The work was performed under VIR state assignment “Collection of oil and fiber crops VIR: maintenance, learning, expanding of genetic diversity” (No. 0662-2019-0001), “Genetic resources of vegetable and cucurbit crops from VIR worldwide collection: effective ways of enlarge of biodiversity, discovery of lows of heritable variability, use of adaptive potential” (No. 0662-2019-0003).

    Πηγή: Vavilov Journal of Genetics and Breeding; Том 23, № 6 (2019); 787-794 ; Вавиловский журнал генетики и селекции; Том 23, № 6 (2019); 787-794 ; 2500-3259

    Περιγραφή αρχείου: application/pdf

    Relation: https://vavilov.elpub.ru/jour/article/view/2270/1295; Artemyeva A.M. Ecological differentiation of Chinese cabbage Bras­ sica rapa ssp. pekinensis (Lour.) Olsson. In: Genetic Collections of Vegetable Crops. St. Petersburg, 2001;148-166. (in Russian); Artemyeva A.M. Donors and sources for breeding of leafy vegetable Brassica rapa L. crops. In: Catalogue VIR. St. Petersburg, 2004; 740:132. (in Russian); Artemyeva A.M., Abremskaya S.S. The sources of breeding valuable characters of leafy Brassica rapa L. (Chinese cabbage, pakchoi, tatsoi, zicaitai, mizina, broccoletto). In: Catalogue VIR. St. Petersburg, 2017;850:84. (in Russian); Artemyeva A.M., Ignatov A.N., Volkova A.I., Kocherina M.N., Konopleva N.V., Chesnokov Y.V. Physiological and genetic components of black rot resistance in double haploid lines of Brassica rapa L. Agricultural Вiology (Sel’skokhozyaistvennaya Biologiya). 2018; 53(1):157-169. DOI 10.15389/agrobiology.2018.1.157eng.; Artemyeva A.M., Kocherina N.V., Kurina A.B., Fateev D.A., Chesnokov Y.V. Mapping of economically valuable loci traits in vegetable crops of the Cabbage family (Brassicaceae Burnett). In: Proc. Int. Conf. devoted to the 85th anniversary of the Agrophysical Research Institute “Agrophysical Trends: From Actual Challenges in Arable Farming and Crop Growing Towards Advanced Technologies”, St. Petersburg, Sept. 27–29, 2017. St. Petersburg, 2017;231-235. (in Russian); Artemyeva A.M., Solovjova A.E., Kocherina N.V., Berensen F.A., Rudneva E.N., Chesnokov Yu.V. Mapping of chromosome loci determined manifestation of morphological and biochemical traits of quality in Brassica rapa L. crops. Russ. J. Plant Physiol. 2016; 63(2):259-272. DOI 10.1134/S1021443716020047.; Bradshaw J.E. Root and Tuber Crops (Ser. Handbook of Plant Breeding). N.Y.: Springer-Verlag, 2010. DOI:10.1007/978-0-387-92765-7.; Chalhoub B., Denoeud F., Liu S., Parkin I.A., Tang H., Wang X., Chiquet J., Belcram H., Tong C., Samans B., Corréa M., Da Silva C., Just J., Falentin C., Koh C.S., Le Clainche I., Bernard M., Bento P., Noel B., Labadie K., Alberti A., Charles M., Arnaud D., Guo H., Daviaud C., Alamery S., Jabbari K., Zhao M., Edger P.P., Chelaifa H., Tack D., Lassalle G., Mestiri I., Schnel N., Le Paslier M.C., Fan G., Renault V., Bayer P.E., Golicz A.A., Manoli S., Lee T.H., Ha Dinh Thi V., Chalabi S., Hu Q., Fan C., Tollenaere R., Lu Y., Battail C., Shen J., Sidebottom C.H.D., Wang X., Canaguier A., Chauveau A., Bérard A., Deniot G., Guan M., Liu Z., Sun F., Lim Y.P., Lyons E., Town C.D., Bancroft I., Wang X., Meng J., Ma J., Pires J.C., King G.J., Brunel D., Delourme R., Renard M., Aury J.M., Adams K.L., Batley J., Snowdon R.J., Tost J., Edwards D., Zhou Y., Hua W., Sharpe A.G., Paterson A.H., Guan C., Wincker P. Early allopolyploid evolution in the post-neolithic Brassica napus oilseed genome. Science. 2014;345(6199):950-953. DOI 10.1126/science.1253435.; Gasich Е.L., Khlopunova L.B., Artemyeva А.М., Gannibal F.B., Levitin М.М. Evaluation of Brassica oleracea L. collection on resistance to diseases in North-west region of Russia. In: Phytosanitary Optimization of Agroecosystems. 2013;386-389. (in Russian); Ghamkhar K., Croser Ja., Aryamanesh N., Campbell M., Kon’kova N., Francis C. Camelina (Camelina sativa (L.) Crantz) as an alternative oilseed: molecular and ecogeographic analyses. Genome. 2010; 53(7):558-567. DOI 10.1139/g10-034.; Gladis T.H., Hammer K. Die Gaterslebener Brassica Kollektion. Feddes Reportium. 1992;103:469-507.; Gómez-Campo C., Prakash S. Origin and domestication. In: Gómez-Campo C. (Ed.). Biology of Brassica Coenospecies. Amsterdam: Elsevier Press, 1999;33-58. DOI 10.1016/S0168-7972(99)80003-6.; Hanelt P. Cruciferae. Rudolf Mansfelds. Berlin, 1986;272-332.; Liu S., Liu Y., Yang X., Tong C., Edwards D. The Brassica oleracea genome reveals the asymmetrical evolution of polyploid genomes. Nat. Commun. 2014;5:3930. DOI 10.1038/ncomms4930.; Lizgunova T.V. The history of botanical study of Brassica oleracea L. Proceedings on Applied Botany, Genetics and Breeding. 1959; 32(3):37-70. (in Russian); Lizgunova T.V. The Cabbage. Leningrad, 1965. (in Russian); Lizgunova T.V. Flora of Cultivated Plants. Vol. 11. Cabbage. 1984. (in Russian); Methodics on Evaluation and Regeneration of Cabbage Worldwide Collection. Leningrad: VIR Publ., 1988. (in Russian); Methodics on Evaluation and Regeneration of Rooted Worldwide Collection (Beet, Turnip, Fodder Turnip, Swede). Leningrad: VIR Publ. 1989;167. (in Russian); Nagornov S.A., Kornev A.J., Meshcheryakova J.V., Busin I.V., Konkova N.G., Mescheryakov A.G. Biofuel from non-traditional vegetable oils. Nauka v Tsentralnoi Rossii = Science in Central Russia. 2017; 2(26):53-61. (in Russian); Parkin I.A., Koh C., Tang H., Robinson S.J., Kagale S. Transcriptome and methylome profiling reveals relics of genome dominance in the mesopolyploid Brassica oleracea. Genome Biol. 2014;15(6):R77. DOI 10.1186/gb-2014-15-6-r77.; Pino Del Carpio D., Basnet R.K., De Vos R.C.H., Maliepaard C., Paulo M.J., Bonnema G. Comparative methods for association studies: a case study on metabolite variation in a Brassica rapa core collection. PLoS One. 2011;6(5):e19624. DOI 10.1371/journal.pone.0019624.; Raiola A., Errico A., Petruk G., Monti D.M., Barone A., Rigano M.M. Bioactive compounds in Brassicaceae vegetables with a role in the prevention of chronic diseases. Molecules. 2018;23:15. DOI 10.3390/molecules23010015.; Romantsova S.V., Gavrilova V.A., Konkova N.G., Pashinin V.A. Composition and spectral characteristics of components of biofuels synthesized from canola oil, false flax and сrаmbе. Vestnik TGU = Bulletin of Tomsk University. 2012;17(1):339-341. (in Russian); Sainger M., Chaudhary D., Jaiwal P.K., Jaiwal A., Sainger P.A., Jaiwal R. Advances in genetic improvement of camelina sativa for biofuel and industrial bio-products. Renew. Sust. Energ. Rev. 2017; 68:623-637. DOI 10.1016/j.rser.2016.10.023.; Shebalina M.A. Turnip, Fodder Turnip, Rutabaga. Leningrad, 1974. (in Russian); Shebalina M.A., Sazonova L.V. Root Crops (Brassica – Turnip, Rutabaga, Radish, Small Radish). In: Flora of Cultivated Plants. Vol. 18. Leningrad, 1985;12. (in Russian); Shu J., Liu Y., Zhang L., Li Z., Fang Z., Yang L., Zhuang M., Zhang Y., Lu H. QTL-seq for rapid identification of candidate genes for flowering time in broccoli × cabbage. Theor. Appl. Genet. 2018;131(4): 917-928. DOI 10.1007/s00122-017-3047-5.; Sinskaya E.N. The oleiferous plants and root crops of the family Cruciferae. Proceedings on Applied Botany, Genetics and Breeding. 1928; 19(3). (in Russian); Sinskaya E.N. Brassica L. Genera. In: Flora of the USSR. Vol. 8. Moscow; Leningrad, 1939. (in Russian); Sinskaya E.N. To specification of systematics and phylogeny of fodder, vegetable and oilseed plants of family Cruciferae. Proceedings on Applied Botany, Genetics and Breeding. 1960;33(3):233-250. (in Russian); Sinskaya E.N. Historical Geography of Cultivated Flora. Leningrad, 1969. (in Russian); Specht C.E., Diederichsen A. Brassica. In: Hanelt P. (Ed.). Mansfelds Encyclopedia of Agricultural and Horticultural Crops. Vol. 3. Berlin: Springer-Verlag, 2001;3:1435-1465.; Vavilov N.I. The Centers of Origin of Cultivated Plants. Proceedings on Applied Botany, Genetics and Breeding. 1926;2:248. (in Russian) Wang X., Kole C. (Eds.). The Brassica rapa genome. In: Compendium of Plant Genomes. Springer-Verlag, Berlin, Heidelberg, 2015. DOI 10.1007/978-3-662-47901-8_2.; Wang X., Wang H., Wang J., Sun R., Wu J., Liu S., Bai Y., Mun J.H., Bancroft I., Cheng F., Huang S., Li X., Hua W., Wang J., Wang X., Freeling M., Pires J.C., Paterson A.H., Chalhoub B., Wang B., Hayward A., Sharpe A.G., Park B.S., Weisshaar B., Liu B., Li B., Liu B., Tong C., Song C., Duran C., Peng C., Geng C., Koh C., Lin C., Edwards D., Mu D., Shen D., Soumpourou E., Li F., Fraser F., Conant G., Lassalle G., King G.J., Bonnema G., Tang H., Wang H., Belcram H., Zhou H., Hirakawa H., Abe H., Guo H., Wang H., Jin H., Parkin I.A., Batley J., Kim J.S., Just J., Li J., Xu J., Deng J., Kim J.A., Li J., Yu J., Meng J., Wang J., Min J., Poulain J., Wang J., Hatakeyama K., Wu K., Wang L., Fang L., Trick M., Links M.G., Zhao M., Jin M., Ramchiary N., Drou N., Berkman P.J., Cai Q., Huang Q., Li R., Tabata S., Cheng S., Zhang S., Zhang S., Huang S., Sato S., Sun S., Kwon S.J., Choi S.R., Lee T.H., Fan W., Zhao X., Tan X., Xu X., Wang Y., Qiu Y., Yin Y., Li Y., Du Y., Liao Y., Lim Y., Narusaka Y., Wang Y., Wang Z., Li Z., Wang Z., Xiong Z., Zhang Z.; Brassica rapa Genome Sequencing Project Consortium. The genome of the mesopolyploid crop species Brassica rapa. Nat. Genet. 2011; 43:1035-1039. DOI 10.1038/ng.919.; Warwick S.I., Hall J.C. Phylogeny of Brassica and wild relatives. In: Gupta S. (Eds.). Biology and Breeding of Crucifers. New York: CRC Press, 2009;19-36.; Warwick S.I., Mummenhoff K., Sauder C.A., Koch M.A., Al-Shehbaz I.A. Closing the gaps: phylogenetic relationships in the Brassicaceae based on DNA sequence data of nuclear ribosomal ITS region. Plant Syst. Evol. 2010;285:209-232. DOI 10.1007/s00606-010-0271-8.; Xiao D., Wang H.G., Basnet R.K., Zhao J.J., Lin K., Hou X., Bonnema G. Genetic dissection of leaf development in Brassica rapa using a “genetical genomics” approach. Plant Physiol. 2014;164: 1309-1325.; https://vavilov.elpub.ru/jour/article/view/2270

  10. 10
  11. 11
    Academic Journal

    Πηγή: Aktualʹnaâ Infektologiâ, Vol 1, Iss 1.01, Pp 56-60 (2013)
    ACTUAL INFECTOLOGY; № 1.01 (2013); 56-60
    Актуальная инфектология-Aktualʹnaâ Infektologiâ; № 1.01 (2013); 56-60
    Актуальна інфектологія-Aktualʹnaâ Infektologiâ; № 1.01 (2013); 56-60

    Περιγραφή αρχείου: application/pdf

  12. 12
  13. 13
  14. 14
  15. 15
  16. 16
  17. 17
  18. 18
  19. 19
  20. 20