Εμφανίζονται 1 - 20 Αποτελέσματα από 29 για την αναζήτηση '"ДОФАМИНЕРГИЧЕСКАЯ СИСТЕМА"', χρόνος αναζήτησης: 0,60δλ Περιορισμός αποτελεσμάτων
  1. 1
  2. 2
  3. 3
    Academic Journal

    Συνεισφορές: The work was carried out with the support of RNF No. 23-25-00123.

    Πηγή: Vavilov Journal of Genetics and Breeding; Том 28, № 7 (2024); 744-751 ; Вавиловский журнал генетики и селекции; Том 28, № 7 (2024); 744-751 ; 2500-3259 ; 10.18699/vjgb-24-75

    Περιγραφή αρχείου: application/pdf

    Relation: https://vavilov.elpub.ru/jour/article/view/4347/1881; Bae Y.J., Kim J.M., Sohn C.H., Choi J.H., Choi B.S., Song Y.S., Nam Y., Cho S.J., Jeon B., Kim J.H. Imaging the substantia nigra in Parkinson disease and other Parkinsonian syndromes. Radiology. 2021;300:260-278. DOI 10.1148/radiol.2021203341; Beitz J.M. Parkinson’s disease: a review. Front. Biosci. (Schol. Ed.). 2014;6:65-74. DOI 10.2741/S415; Bidesi N.S., Vang Andersen I., Windhorst A.D., Shalgunov V., Herth M.M. The role of neuroimaging in Parkinson’s disease. J. Neurochem. 2021;159:660-689. DOI 10.1111/jnc.15516; Burre J., Sharma M., Sudhof T.C. Cell biology and pathophysiology of α-synuclein. Cold. Spring. Harb. Perspect. Med. 2018;8:a024091. DOI 10.1101/cshperspect.a024091; Case L.K., Del Rio R., Bonney E.A., Zachary J.F., Blankenhorn E.P., Tung K.S., Teuscher C. The postnatal maternal environment affects autoimmune disease susceptibility in A/J mice. Cell Immunol. 2010; 260:119-127. DOI 10.1016/j.cellimm.2009.10.002; Chen D., Liu Y., Shu G., Chen C., Sullivan D.A., Kam W.R., Hann S., Fowler M., Warman M.L. Ocular manifestations of chordin-like 1 knockout mice. Cornea. 2020;39:1145-1150. DOI 10.1097/ICO.0000000000002371; Chia S.J., Tan E.K., Chao Y.X. Historical perspective: models of Parkinson’s disease. Int. J. Mol. Sci. 2020;21:2464. DOI 10.3390/ijms21072464; Crabtree D.M., Zhang J. Genetically engineered mouse models of Parkinson’s disease. Brain Res. Bull. 2012;88:13-32. DOI 10.1016/j.brainresbull.2011.07.019; Deutch A.Y. Striatal plasticity in parkinsonism: dystrophic changes in medium spiny neurons and progression in Parkinson’s disease. J. Neural Transm. Suppl. 2006;70:67. DOI 10.1007/978-3-211-45295-0_12; Dickson D.W. Neuropathology of Parkinson disease. Parkinsonism Relat. Disord. 2018;46:S30-S33. DOI 10.1016/j.parkreldis.2017. 07.033; Dickson D.W., Braak H., Duda J.E., Duyckaerts C., Gasser T., Halliday G.M., Hardy J., Leverenz J.B., Del Tredici K., Wszolek Z.K., Litvan I. Neuropathological assessment of Parkinson’s disease: refining the diagnostic criteria. Lancet Neurol. 2009;8:1150-1157. DOI 10.1016/S1474-4422(09)70238-8; Graham D.R., Sidhu A. Mice expressing the A53T mutant form of human alpha-synuclein exhibit hyperactivity and reduced anxietylike behavior. J. Neurosci. Res. 2010;88:1777-1183. DOI 10.1002/jnr.22331; Grigoryan G.A., Bazyan A.S. The experimental models of Parkinson’s disease in animals. Uspekhi Fiziologicheskikh Nauk = Progress in Physiological Science. 2007;38:80-88 (in Russian); Halliday G.M., Del Tredici K., Braak H. Critical appraisal of brain pathology staging related to presymptomatic and symptomatic cases of sporadic Parkinson’s disease. J. Neural Transm. Suppl. 2006;70:99. DOI 10.1007/978-3-211-45295-0_16; Hayes M.T. Parkinson’s disease and parkinsonism. Am. J. Med. 2019; 132:802-807. DOI 10.1016/j.amjmed.2019.03.001; Holmdahl R., Malissen B. The need for littermate controls. Eur. J. Immunol. 2012;42:45-47. DOI 10.1002/eji.201142048; Jellinger K.A. Pathology of Parkinson’s disease. Mol. Chem. Neuropath. 1991;14:153-197. DOI 10.1007/bf03159935; Kalia L.V., Kalia S.K., McLean P.J., Lozano A.M., Lang A.E. α-Synuclein oligomers and clinical implications for Parkinson disease. Ann. Neurol. 2013;73:155-169. DOI 10.1002/ana.23746; Kato M., Kimura M. Effects of reversible blockade of basal ganglia on a voluntary arm movement. J. Neurophysiol. 1992;68:1516-1534. DOI 10.1152/jn.1992.68.5.1516; Korchounov A., Meyer M.F., Krasnianski M. Postsynaptic nigrostriatal dopamine receptors and their role in movement regulation. J. Neural Transm. (Vienna). 2010;117:1359-1369. DOI 10.1007/s00702-010-0454-z; Korolenko T.A., Shintyapina A.B., Belichenko V.M., Pupyshev A.B., Akopyan A.A., Fedoseeva L.A., Russkikh G.S., Vavilin V.A., Tenditnik M.V., Lin C-L., Amstislavskaya T.G., Tikhonova M.A. Early Parkinson’s disease-like pathology in a transgenic mouse model involves a decreased Cst3 mRNA expression but not neuroinflammatory response in the brain. Med. Univer. 2020;3:66-78. DOI 10.2478/medu-2020-0008; Lai T.T., Kim Y.J., Nguyen P.T., Koh Y.H., Nguyen T.T., Ma H.I., Kim Y.E. Temporal evolution of inflammation and neurodegeneration with alpha-synuclein propagation in Parkinson’s disease mouse model. Fron. Int. Neurosci. 2021;15:715190. DOI 10.3389/fnint.2021.715190; Langley M.R., Ghaisas S., Palanisamy B.N., Ay M., Jin H., Anantharam V., Kanthasamy A., Kanthasamy A.G. Characterization of nonmotor behavioral impairments and their neurochemical mechanisms in the MitoPark mouse model of progressive neurodegeneration in Parkinson’s disease. Exp. Neurol. 2021;341:113716. DOI 10.1016/j.expneurol.2021.113716; Lee F.J., Liu F., Pristupa Z.B., Niznik H.B. Direct binding andfunctional coupling of alpha-synuclein to the dopamine transporters accelerate dopamine-induced apoptosis. FASEB J. 2001;15:916-926. DOI 10.1096/fj.00-0334com; Liu Q., Xu Y., Wan W., Ma Z. An unexpected improvement in spatial learning and memory ability in alpha-synuclein A53T transgenic mice. J. Neural. Transm. (Vienna). 2018;125(2):203-210. DOI 10.1007/s00702-017-1819-3; Maric D., Jahanipour J., Li X.R., Singh A., Mobiny A., Van Nguyen H., Sedlock A., Grama K., Roysam B. Whole-brain tissue mapping toolkit using large-scale highly multiplexed immunofluorescence imaging and deep neural networks. Nat. Commun. 2021;12:1550. DOI 10.1038/s41467-021-21735-x; Nicholas L.M., Ozanne S.E. Early life programming in mice by maternal overnutrition: mechanistic insights and interventional approaches. Philos. Trans. R. Soc. Lond. B. Biol. Sci. 2019;374:20180116. DOI 10.1098/rstb.2018.0116; Oaks A.W., Frankfurt M., Finkelstein D.I., Sidhu A. Age-dependent effects of A53T alpha-synuclein on behavior and dopaminergic function. PLoS One. 2013;8:e60378. DOI 10.1371/journal.pone.0060378; Paumier K.L., Sukoff Rizzo S.J., Berger Z., Chen Y., Gonzales C., Kaftan E., Li L., Lotarski S., Monaghan M., Shen W., Stolyar P., Vasilyev D., Zaleska M., D Hirst W., Dunlop J. Behavioral characterization of A53T mice reveals early and late stage deficits related to Parkinson’s disease. PLoS One. 2013;8(8):e70274. DOI 10.1371/journal.pone.0070274.; Paxinos G., Franklin K. Mouse Brain in Stereotaxic Coordinates. 4th ed. San Diego: Acad. Press, 2012 Poewe W., Seppi K., Tanner C.M., Halliday G.M., Brundin P., Volkmann J., Schrag A.E., Lang A.E. Parkinson disease. Nat. Rev. Dis. Primers. 2017;3:17013. DOI 10.1038/nrdp.2017.13; Polymeropoulos M.H., Lavedan C., Leroy E., Ide S.E., Dehejia A., Dutra A., Pike B., Root H., Rubenstein J., Boyer R., Stenroos E.S., Chandrasekharappa S., Athanassiadou A., Papapetropoulos T., Johnson W.G., Lazzarini A.M., Duvoisin R.C., Di Iorio G., Golbe L.I., Nussbaum R.L. Mutation in the alpha-synuclein gene identified in families with Parkinson’s disease. Science. 1997;276:2045-2047. DOI 10.1126/science.276.5321.2045; Pupyshev A.B., Korolenko T.A., Akopyan A.A., Amstislavskaya T.G., Tikhonova M.A. Suppression of autophagy in the brain of transgenic mice with overexpression of А53Т-mutant α-synuclein as an early event at synucleinopathy progression. Neurosci. Lett. 2018;672: 140-144. DOI 10.1016/j.neulet.2017.12.001; Rozhkova I.N., Okotrub S.V., Brusentsev E.Yu., Rakhmanova T.A., Lebedeva D.A., Kozeneva V.S., Khotskin N.V., Amstislavsky S.Ya. Analysis of behavior and brain neuronal density in B6.Cg-Tg(PrnpSNCA*A53T)23Mkle/J mice modeling, a Parkinson’s disease. Rossiyskiy Fiziologicheskiy Zhurnal imeni I.M. Sechenova = Russian Journal of Physiology. 2023;59:1633-1647. DOI 10.31857/S0869813923090091 (in Russian); Schultz W., Ruffieux A., Aebischer P. The activity of pars compacta neurons of the monkey substantia nigra in relation to motor activation. Exp. Brain Res. 1983;51:377-387. DOI 10.1016/0304-3940(84)90456-7; Seo J.H., Kang S.W., Kim K., Wi S., Lee J.W., Cho S.R. Environmental enrichment attenuates oxidative stress and alters detoxifying enzymes in an A53T α-synuclein transgenic mouse model of Parkinson’s disease. Antioxidants (Basel). 2020;9:928. DOI 10.3390/antiox9100928; Spillantini M.G., Schmidt M.L., Lee V.M., Trojanowski J.Q., Jakes R., Goedert M. Alpha-synuclein in Lewy bodies. Nature. 1997;388: 839-840. DOI 10.1038/42166; Stern G. The effects of lesions in the substantia nigra. Brain. 1966;89: 449-478. DOI 10.1093/brain/89.3.449; Taguchi T., Ikuno M., Hondo M., Parajuli L.K., Taguchi K., Ueda J., Sawamura M., Okuda S., Nakanishi E., Hara J., Uemura N., Hatanaka Y., Ayaki T., Matsuzawa S., Tanaka M., El-Agnaf O.M.A., Koike M., Yanagisawa M., Uemura M.T., Yamakado H., Takahashi R. α-Synuclein BAC transgenic mice exhibit RBD-like behaviour and hyposmia: a prodromal Parkinson’s disease model. Brain. 2020;143:249-265. DOI 10.1093/brain/awz380; Tang H., Gao Y., Zhang Q., Nie K., Zhu R., Gao L., Feng S., Wang L., Zhao J., Huang Z., Zhang Y., Wang L. Chronic cerebral hypoperfusion independently exacerbates cognitive impairment within the pathopoiesis of Parkinson’s disease via microvascular pathologys. Behav. Brain Res. 2017;333:286-294. DOI 10.1016/j.bbr.2017.05.061; Tikhonova M.A., Tikhonova N.G., Tenditnik M.V., Ovsyukova M.V., Akopyan A.A., Dubrovina N.I., Amstislavskaya T.G., Khlestkina E.K. Effects of grape polyphenols on the life span and neuroinflammatory alterations related to neurodegenerative Parkinson disease-like disturbances in mice. Molecules. 2020;25:5339. DOI 10.3390/molecules25225339; Tran J., Anastacio H., Bardy C. Genetic predispositions of Parkinson’s disease revealed in patient-derived brain cells. NPJ Parkinsons Dis. 2020;6:8. DOI 10.1038/s41531-020-0110-8; Unger E.L., Eve D.J., Perez X.A., Reichenbach D.K., Xu Y., Lee M.K., Andrews A.M. Locomotor hyperactivity and alterations in dopamine neurotransmission are associated with overexpression of A53T mutant human alpha-synuclein in mice. Neurobiol. Dis. 2006;21:431- 443. DOI 10.1016/j.nbd.2005.08.005; Van der Putten H., Wiederhold K.H., Probst A., Barbieri S., Mistl C., Danner S., Kauffmann S., Hofele K., Spooren W.P., Ruegg M.A., Lin S., Caroni P., Sommer B., Tolnay M., Bilbe G. Neuropathology in mice expressing human alpha-synuclein. J. Neurosci. 2000;20: 6021-6029. DOI 10.1523/JNEUROSCI.20-16-06021.2000; Venda L., Cragg S., Buchman V.L., Wade-Martins R. α-Synuclein and dopamine at the crossroads of Parkinson’s disease. Trends Neurosci. 2010;12:559-568. DOI 10.1016/j.tins.2010.09.004; Wang Y., Sun Z., Du S., Wei H., Li X., Li X., Shen J., Chen X., Cai Z. The increase of α-synuclein and alterations of dynein in A53T transgenic and aging mouse. J. Clin. Neurosci. 2022;96:154-162. DOI 10.1016/j.jocn.2021.11.002; Wu D., Dean J. Maternal factors regulating preimplantation development in mice. Curr. Top. Dev. Biol. 2020;140:317-340. DOI 10.1016/bs.ctdb.2019.10.006; Zhang Yu., Wu Q., Zhang L., Wang Q., Yang Z., Liu J., Feng L. Caffeic acid reduces A53T α-synuclein by activating JNK/Bcl-2-mediated autophagy in vitro and improves behaviour and protects dopaminergic neurons in a mouse model of Parkinson’s disease. Pharmacol. Res. 2019;150:104538. DOI 10.1016/j.phrs.2019.104538; Zhang Yu., Wu Q., Ren Y., Zhang Y., Feng L. A53T α-synuclein induces neurogenesis impairment and cognitive dysfunction in line M83 transgenic mice and reduces the proliferation of embryonic neural stem cells. Brain Res. Bull. 2022;182:118-129. DOI 10.1016/ j.brainresbull.2022.02.010; Zheng M., Liu Y., Xiao Z., Jiao L., Lin X. Tau knockout and α-synuclein A53T synergy modulated parvalbumin-positive neurons degeneration staging in substantia nigra pars reticulata of Parkinson’s disease-liked model. Front. Aging Neurosci. 2022;13:784665. DOI 10.3389/fnagi.2021.784665.; https://vavilov.elpub.ru/jour/article/view/4347

  4. 4
  5. 5
    Academic Journal

    Συνεισφορές: The results obtained in the project “Development of a methodology for determining the status of genetic loci and lifetime modification of DNA sites affecting the psychoemotional status of a person” of the research- and-technological program of the Union State of Russia and Belarus “DNA Identification”., Работа выполнена в рамках реализации мероприятия «Разработка методики определения статуса генетических локусов и прижизненной модификации участков ДНК, влияющих на психоэмоцио нальный статус человека» НТП Союзного государства «Разра ботка инновационных геногеографических и геном ных технологий идентификации личности и индивидуаль ных особенностей человека на основе изучения генофондов регионов Союзного государства» («ДНК-идентификация»).

    Πηγή: Doklady of the National Academy of Sciences of Belarus; Том 66, № 3 (2022); 294-300 ; Доклады Национальной академии наук Беларуси; Том 66, № 3 (2022); 294-300 ; 2524-2431 ; 1561-8323 ; 10.29235/1561-8323-2022-66-3

    Περιγραφή αρχείου: application/pdf

    Relation: https://doklady.belnauka.by/jour/article/view/1067/1064; Калимуллина, Л. Б. Анализ ассоциаций по сочетаниям генотипов полиморфных ДНК-локусов (tag 1a и Ncoi) Drd2, 256А/G гена Slc6a3 и объемных характеристик миндалевидного комплекса мозга с повышенной тревожностью / Л. Б. Калимуллина, А. В. Ахмадеев, А. Я. Ханнанова // Успехи современного естествознания. – 2011. – № 11. – С. 9–11.; Benjamin, J. Molecular Genetics and the Human Personality / J. Benjamin, R. P. Ebstein, R. H. Belmaker. – American Psychiatric Pub., 2008. – 452 р.; Dopamine multilocus genetic profiles predict sex differences in reactivity of the human reward system / E. K. Diekhof [et al.] // Brain Struct. Funct. – 2021. – Vol. 226, N 4. – Р. 1099–1114. https://doi.org/10.1007/s00429-021-02227-6; A validation study of the Hospital Anxiety and Depression Scale (HADS) in different groups of Dutch subjects / P. Spinhoven [et al.] // Psychol. Med. – 1997. – Vol. 27, N 2. – Р. 363–370. https://doi.org/10.1017/s0033291796004382; Cohen, S. A Global Measure of Perceived Stress / S. Cohen, T. Kamarck, R. Mermelstein // J. Health Soc. Behav. – 1983. – Vol. 24, N 4. – P. 385–396. https://doi.org/10.2307/2136404; Валидизация русскоязычной версии опросника «Шкала воспринимаемого стресса-10» / В. А. Абабков [и др.] // Вестн. С.-Петерб. ун-та. Сер. 16: Психология. Педагогика. – 2016. – № 2. – С. 6–15. https://doi.org/10.21638/11701/spbu16.2016.202; Look beyond Catechol-O-Methyltransferase genotype for cathecolamines derangement in migraine: the BioBIM rs4818 and rs4680 polymorphisms study / M. L. De Marchis [et al.] // J. Headache Pain. – 2015. – Vol. 16, N 1. – P. 37–45. https://doi.org/10.1186/s10194-015-0520-x; Dean, B. Associations between catechol-O-methyltransferase (COMT) genotypes at rs4818 and rs4680 and gene expression in human dorsolateral prefrontal cortex / B. Dean, G. M. Parkin, A. S. Gibbons // Exp. Brain Res. – 2020. – Vol. 238, N 2. – P. 477–486. https://doi.org/10.1007/s00221-020-05730-0; Genomic organization of the human catechol O-methyltransferase gene and its expression from two distinct promoters / J. Tenhunen [et al.] // Eur. J. Biochem. – 1994. – Vol. 223, N 3. – P. 1049–1059. https://doi.org/10.1111/j.1432-1033.1994.tb19083.x; A haplotype implicated in schizophrenia susceptibility is associated with reduced COMT expression in human brain / N. J. Bray [et al.] // Am. J. Hum. Genet. – 2003. – Vol. 73, N 1. – P. 152–161. https://doi.org/10.1086/376578; Effect of COMT Val108/158 Met genotype on frontal lobe function and risk for schizophrenia / M. F. Egan [et al.] // Proc. Natl. Acad. Sci. – 2001. – Vol. 98, N 12. – P. 6917–6922. https://doi.org/10.1073/pnas.111134598; Regulatory Polymorphisms in Human DBH Affect Peripheral Gene Expression and Sympathetic Activity / E. S. Barrie [et al.] // Circ. Res. – 2014. – Vol. 115, N 12. – P. 1017–1025. https://doi.org/10.1161/circresaha.116.304398; Association of regulatory variants of dopamine β-hydroxylase with cognition and tardive dyskinesia in schizophrenia subjects / T. J. Punchaichira [et al.] // J. Psychopharmacol. Oxf. Engl. – 2020. – Vol. 34, N 3. – P. 358–369. https://doi.org/10.1177/0269881119895539; The dopamine β-hydroxylase –1021C/T polymorphism is associated with the risk of Alzheimer’s disease in the Epistasis Project / O. Combarros [et al.] // BMC Med. Genet. – 2010. – Vol. 11, N 1. – Р. 162–172. https://doi.org/10.1186/1471-2350-11-162; Effects of cultural intensity and density regime treatment on post-thinning loblolly pine individual tree DBH increment in the lower coastal plain of the southeastern United States / J. T. Perren [et al.] // Proc. 18th Bienn. South. Silvic. Res. Conf. E-Gen Tech Rep SRS-212 Asheville NC US Dep. Agric. For. Serv. South. Res. Stn. 614 P. – 2016. – Vol. 212. – P. 288–292.; https://doklady.belnauka.by/jour/article/view/1067

  6. 6
  7. 7
    Academic Journal

    Πηγή: Сборник статей

    Περιγραφή αρχείου: application/pdf

    Relation: Актуальные вопросы современной медицинской науки и здравоохранения: Материалы VI Международной научно-практической конференции молодых учёных и студентов, посвященной году науки и технологий, (Екатеринбург, 8-9 апреля 2021): в 3-х т.; http://elib.usma.ru/handle/usma/5985

    Διαθεσιμότητα: http://elib.usma.ru/handle/usma/5985

  8. 8
  9. 9
  10. 10
    Academic Journal

    Πηγή: Neurology, Neuropsychiatry, Psychosomatics; Vol 6, No 4 (2014); 31-39 ; Неврология, нейропсихиатрия, психосоматика; Vol 6, No 4 (2014); 31-39 ; 2310-1342 ; 2074-2711 ; 10.14412/2074-2711-2014-4

    Περιγραφή αρχείου: application/pdf

    Relation: https://nnp.ima-press.net/nnp/article/view/450/436; Потапов АА, Лихтерман ЛБ, Кравчук АД, Рошаль ЛМ. Черепно-мозговая травма: проблемы и перспективы. Вопросы нейрохирургии им. Н.Н. Бурденко. 2009;(2):3–8. [Potapov AA, Likhterman LB, Kravchuk AD, Roshal' LM. Traumatic brain injury: problems and perspectives. Voprosy neirokhirurgii im. N.N. Burdenko. 2009;(2):3–8. (In Russ.)]; Bales JW, Wagner AK, Kline AE, Dixon CE. Persistent cognitive dysfunction after traumatic brain injury: a dopamine hypothesis. Neurosci Biobehav Rev. 2009;33:981–1003. DOI: http://dx.doi.org/10.1016/j.neubiorev. 2009.03.011.; Зайцев ОС, Потапов АА, Шарова ЕВ и др. Комплексная реабилитация пострадавших с психическими расстройствами вследствие тяжелой черепно-мозговой травмы. Неврологический вестник. Журнал им. В.М. Бехтерева. 2009;XLI(4):18–21. [Zaitsev OS, Potapov AA, Sharova EV. Complex rehabilitation of patients with mental disorders after severe cranio-cerebral traumas. Nevrologicheskii vestnik. Zhurnal im. V.M. Bekhtereva. 2009;XLI(4):18–21. (In Russ.)]; Смирнов ЛИ. Патологическая анатомия и патогенез травматических заболеваний нервной системы. Том 1–2. Москва: Издательство АМН СССР. 1947–1949. С. 310. [Smirnov LI. Patologicheskaya anatomiya i patogenez travmaticheskikh zabolevanii nervnoi sistemy [Pathological anatomy and pathogenesis of traumatic diseases of nervous system]. Vol. 1–2. Moscow: Izdatel'stvo AMN SSSR. 1947–1949. P. 310.]; Кондратьев АН, Ивченко ИМ. Анестезия и интенсивная терапия травмы ЦНС. Санкт-Петербург: Санкт-Петербургское медицинское издательство; 2002. С. 128. [Kondrat'ev AN, Ivchenko IM. Anesteziya i intensivnaya terapiya travmy TsNS [Anesthesia and intensive therapy of a trauma of TsNS]. St-Petersburg: Sankt-Peterburgskoe meditsinskoe izdatel'stvo; 2002. P. 128.]; Reilly PL, Bullock R, editors. Head Injury, pathophysiology and management. 2nd ed. 2005. P. 501–5. DOI: http://dx.doi.org/10.1201/b13492.; Seeman P, Tedesco JL, Lee T, et al. Dopamine receptors in the central nervous system. Fed Proc. 1978;37:131–6.; Chudasama Y, Robbins TW. Functions of frontostriatal systems in cognition: comparative neuropsychopharmacological studies in rats, monkeys and deficits induced by closed-head injury in the mouse. J Neurotrauma. 2006;15:231–7.; Chen Y, Shohami E, Constantini S, Weinstock M. Rivastigmine, a brain-selective acetylcholinesterase inhibitor, ameliorates cognitive and motor deficits induced by closedhead injury in the mouse. J Neurotrauma. 1998;15(4):231–7. DOI: http://dx.doi.org/ 10.1089/neu.1998.15.231.; Noble JM, Hauser WA, Silver JM. Effects of rivastigmine on cognitive function in patients with traumatic brain injury. Neurology. 2007;68:1749–50. DOI: http://dx.doi.org/10.1212/01.wnl.0000266745.86958.ce.; Tenovuo O. Central acetylcholinesterase inhibitors in the treatment of chronic traumatic brain injury-clinical experience in 111 patients. Prog Neuropsychopharmacol Biol Psychiat. 2005;29:61–7. DOI: http://dx.doi.org/10.1016/j.pnpbp.2004.10.006.; Raz A. Anatomy of attentional networks. J Anat Rec B New Anat. 2004;281:21–36. DOI: http://dx.doi.org/10.1002/ar.b.20035.; Ding Y, Yao B, Lai Q, McAllister JP. Impaired motor learning and diffuse axonal damage in motor and visual systems of the rat following traumatic brain injury. J Neurol Res. 2001;23:193–202. DOI: http://dx.doi.org/10.1179/016164101101198334.; Dunn-Meynell AA, Levin BE. Histological markers of neuronal, axonal and astrocytic changes after lateral rigid impact traumatic brain injury. J Brain Res. 1997;761:25–41. DOI: http://dx.doi.org/10.1016/S0006-8993(97)00210-2.; Dietrich WD, Alonso O, Halley M. Early microvascular and neuronal consequences of traumatic brain injury: a light and electron microscopic study in rats. J Neurotrauma. 1994;11:289–301. DOI: http://dx.doi.org/10.1089/neu.1994.11.289.; Fontaine A, Azouvi P, Remy P, et al. Functional anatomy of neuropsychological deficits after severe traumatic brain injury. Neurology. 1999;53:1963–8. DOI: http://dx.doi.org/10.1212/WNL.53.9.1963.; Hicks RR, Smith DH, Lowenstein DH, et al. Mild experimental brain injury in the rat induces cognitive deficits associated with regional neuronal loss in the hippocampus. J Neurotrauma. 1993;10:405–14. DOI: http://dx.doi.org/10.1089/neu.1993.10.405.; Smith DH, Lowenstein DH, Gennarelli TA, McIntosh TK. Persistent memory dysfunction is associated with bilateral hippocampal damage following experimental brain injury. Neurosci Lett. 1994;168:151–4. DOI: http://dx.doi.org/10.1016/0304-3940(94)90438-3.; Lemon N, Manahan-Vaughan D. Dopamine D1/D5 receptors gate the acquisition of novel information through hippocampal long-term potentiation and long-term depres-sion. J Neurosci. 2006;26:7723–9. DOI: http://dx.doi.org/10.1523/JNEUROSCI. 1454-06.2006.; Dixon CE, Lyeth BG, Povlishock JT, et al. A fluid percussion model of experimental brain injury in the rat. J Neurosurg. 1987;67:110–9. DOI: http://dx.doi.org/10.3171/jns.1987.67. 1.011021.; Lighthall JW, Dixon CE, Anderson TE. Experimental models of brain injury. J Neurotrauma. 1989;6:83–97. DOI: http://dx.doi.org/10.1089/neu.1989.6.83.; Угрюмов ВМ, редактор. Тяжелая закрытая травма черепа и головного мозга. Москва: Медицина; 1976. С. 303–7. [Ugryumov VM, editor. Tyazhelaya zakrytaya travma cherepa i golovnogo mozga [The severe closed injury of a skull and brain]. Moscow: Meditsina; 1976. P. 303–7.]; Goldstein LB. Neuropharmacology of TBIinduced plasticity. J Brain Inj. 2003;17:685–94. DOI: http://dx.doi.org/10.1080/0269905031000107179.; McAllister TW, Flashman LA, Sparling MB, Saykin AJ. Working memory deficits after traumatic brain injury: catecholaminergic mechanisms and prospects for treatment – a review. J Brain Inj. 2004;18:331–50. DOI: http://dx.doi.org/10.1080/026990503 10001617370.; Gentilini M, Barbieri C, De Renzi E, Faglioni P. Space exploration with and without the aid of vision in hemisphere-damaged patients. J Cortex. 1989;25: 643–51. DOI: http://dx.doi.org/10.1016/S0010-9452(89)80024-3.; Draper K, Ponsford J. Cognitive functioning ten years following traumatic brain injury and rehabilitation. Neuropsychology. 2008;22:618–25. DOI: http://dx.doi.org/10.1037/0894- 4105.22.5.618.; Ponsford J, Kinsella G. Attentional deficits following closed-head injury. J Clin Exp Neuropsychol. 1992;14:822–38. DOI: http://dx.doi.org/10.1080/01688639208402865.; McDowell S, Whyte J, D'Esposito M. Working memory impairments in traumatic brain injury: evidence from a dual-task paradigm. Neuropsychologia. 1997;35:1341–53. DOI: http://dx.doi.org/10.1016/S0028-3932(97)00082-1.; Wise SP, Murray EA, Gerfen CR. The frontal cortex-basal ganglia system in primates. Crit Rev Neurobiol. 1996;10:317–56. DOI: http://dx.doi.org/10.1615/CritRev Neurobiol.v10.i3-4.30.; Brennan AR, Arnsten AF. Neuronal mechanisms underlying attention deficit hyperactivity disorder: the influence of arousal on prefrontal cortical function. J Ann NY Acad Sci. 2008;1129:236–45. DOI: http://dx.doi.org/10.1196/annals.1417.00731.; Sanders MJ, Sick TJ, Perez-Pinzon MA, et al. Chronic failure in the maintenance of longterm potentiation following fluid percussion injury in the rat. J Brain Res. 2000;861:79–86. DOI: http://dx.doi.org/10.1016/S0006-8993(00)01986-7.; Baddeley A. Working memory. J Science. 1992;255:556–9. DOI: http://dx.doi.org/10.1126/science.1736359.; Bales JW, Wagner AK, Kline AE, Dixon CE. Persistent cognitive dysfunction after traumatic brain injury: a dopamine hypothesis. Neurosci Biobehav Rev. 2009;33:981–1003. DOI: http://dx.doi.org/10.1016/j.neubiorev.2009.03.011.; Oddy M, Coughlan T, Tyerman A, Jenkins D. Social adjustment after closed head injury: a further follow-up seven years after injury. J Neurol Neurosurg Psychiatry. 1985;48:564–8. DOI: http://dx.doi.org/10.1136/jnnp.48.6.564.; Arciniegas DB, Topkoff J, Silver JM. Neuropsychiatric aspects of traumatic brain injury. Curr Treat Options Neurol. 2000;2(2):169–86. DOI: http://dx.doi.org/10. 1007/s11940-000-0017-y.; Moldover JE, Goldberg KB, Prout MF. Depression after traumatic brain injury: a review of evidence for clinical heterogeneity. J Neuropsychol. 2004;14:143–54. DOI; Mega MS, Cummings JL. Frontal-subcortical circuits and neuropsychiatric disorders. J Neuropsychiatry Clin Neurosci. 1994;6:358–70.; Donnemiller E, Brenneis C, Wissel J, et al. Impaired dopaminergic neurotransmission in patients with traumatic brain injury: a SPECT study using 123I-beta-CIT and 123I-IBZM. Eur J Nucl Med. 2000;27:1410–4. DOI: http://dx.doi.org/10.1007/s002590000308.; Meythaler JM, Brunner RC, Johnson A, Novack TA. Amantadine to improve neurorecovery in traumatic brain injury-associated diffuse axonal injury: a pilot double-blind randomized trial. J Head Trauma Rehabil. 2002;17:300–13. DOI: http://dx.doi.org/10.1097/00001199- 200208000-00004.; Бархатова ВП. Нейротрансмиттерная организация базальных ганглиев. В кн.: Экстрапирамидные расстройства. Руководство по диагностике и лечению. Под ред. В.Н. Штока, И.А. Ивановой-Смоленской, О.С. Левина. Москва: МЕДпресс-информ; 2002. С. 9–15. [Barkhatova VP. Neyrotransmitter organization of bazal ganglies. In: Ekstrapiramidnye rasstroistva. Rukovodstvo po diagnostike i lecheniyu [Extrapyramidal frustration. Guide to diagnostics and treatment]. Shtok VN, Ivanova-Smolenskaya IA, Levin OS, editors. Moscow: MEDpress-inform; 2002. P. 9–15.]; Голубев ВЛ, Левин ЯИ, Вейн AM. Болезнь Паркинсона и синдром паркинсонизма. Москва: МЕДпресс-информ; 2000. С. 416. [Golubev VL, Levin YaI, Vein AM. Bolezn' Parkinsona i sindrom parkinsonizma [Parkinson's disease and syndrome of parkinsonism]. Moscow: MEDpress-inform; 2000. P. 416.]; Wagle AC, Wagle SA, Markova IS, Berrios GE. Psychiatric Morbidity in Huntington's disease. Neurology, Psychiatry and Brain Research. 2000;8:5–16.; Луцкий ИС, Евтушенко СК, Симонян ВА. Болезнь Паркинсона (клиника, диагностика, принципы терапии). Международный неврологический журнал. 2011;5(43):159–74. [Lutskii IS, Evtushenko SK, Simonyan VA. Parkinson's disease (clinic, diagnostics, principles of therapy). Mezhdunarodnyi nevrologicheskii zhurnal. 2011;5(43):159–74. (In Russ.)]; Аракелян РК, Неробкова ЕА, Катунина ЕА. Функциональная активность головного мозга у пациента с болезнью Паркинсона при лечении сульфатом амантадина. Журнал неврологии и психиатрии им. С.С. Корсакова. 2005;105(9):18–22. [Arakelyan RK, Nerobkova EA, Katunina EA. Funktsional'naya aktivnost' golovnogo mozga u patsienta s bolezn'yu Parkinsona pri lechenii sul'fatom amantadina. Zhurnal nevrologii i psikhiatrii im. S.S. Korsakova. 2005;105(9):18–22. (In Russ.)]; Soikkeli R, Partanen J, Soininen H, et al. Slowing of EEG in Parkinson's disease. Electroencephalogr Clin Neurophysiol. 1991;79(3):159–65. DOI: http://dx.doi.org/10.1016/0013-4694(91)90134-P.; Fonseca LC, Tedrus GM, Letro GH, Bossoni AS. Dementia, mild cognitive impairment and quantitative EEG in patients with Parkinson's disease. J Clin EEG Neurosci. 2009;40(3):168–72. DOI: http://dx.doi.org/10.1177/155005940904000309.; Обухов ЮВ, Королев МС, Карабанов АВ и др. Особенности частотно-временной структуры ЭЭГ у пациентов на ранних стадиях болезни Паркинсона. Технологии живых систем. 2011;8:40–7. [Obukhov YuV, Korolev MS, Karabanov AV, et al. The peculiarities of EEG time-frequency structure in patients of early stage of Parkinson disease. Tekhnologii zhivykh sistem. 2011;8:40–7. (In Russ.)]; Arciniegas DB. The cholinergic hypothesis of cognitive impairment caused by traumatic brain injury. Curr Psychiatry Rep. 2003;5:391–9. DOI: http://dx.doi.org/10.1007/s11920-003- 0074-5.; Челяпина МВ, Шарова ЕВ, Зайцев ОС. Клинические и электроэнцефалографические эффекты сульфата амантадина (ПК-Мерц) на фоне угнетенного сознания вследствие тяжелой травмы головного мозга. Журнал неврологии и психиатрии им. С.С. Корсакова. 2011;111(5):24–9. [Chelyapina MV, Sharova EV, Zaitsev OS. Clinical and electroencephalographic effects of amantadine sulfate (PK-Merz) on consciousness disorders due to the severe traumatic brain injury. Zhurnal nevrologii i psikhiatrii im. S.S. Korsakova. 2011;111(5):24–9. (In Russ.)]; Доброхотова ТА, Гриндель ОМ, Брагина НН и др. Восстановление сознания после длительной комы у больных с тяжелой черепно-мозговой травмой. Журнал невропатологии и психиатрии им. C.C. Корсакова. 1985;85(5):720–6. [Dobrokhotova TA, Grindel' OM, Bragina NN, et al. Restoration of consciousness after a long coma at patients with a severe craniocereberal injury. Zhurnal nevropatologii i sikhiatrii im. S.S. Korsakova. 1985;85(5):720–6. (In Russ.)]; Доброхотова ТА, Потапов АА, Зайцев ОС, Лихтерман ЛБ. Обратимые посткоматозные бессознательные состояния. Социальная и клиническая психиатрия. 1996;6(2):26–36. [Dobrokhotova TA, Potapov AA, Zaitsev OS, Likhterman LB. Reversible post-coma unconsciousnesses. Sotsial'naya i klinicheskaya psikhiatriya. 1996;6(2):26–36. (In Russ.)]; Зайцев ОС. Проблемы восстановления психической деятельности после тяжелой черепно-мозговой травмы. Перший з’iзд нейрохiрургiв Украiни. Тези доповiдей. Киiв; 1993. С. 212. [Zaitsev OS. Problems of restoration of mental activity after a severe craniocereberal injury. Перший з’iзд нейрохiрургiв Украiни. Тези доповiдей. Киiв; 1993. P. 212.]; Fahn S, Marsden C, Calne D, et al., editors. Unified Parkinson's disease rating scale. Recent developments in Parkinson's disease. McMillan Healthcare Information. 1987;5:153–63.; McPeak LA Physiatric history and examination. In: Physical medicine and rehabilitation. Braddom R, editor. W.B. Saunders Company; 1996. P. 3–42.; Вейс М, Зембатый А. Физиотерапия. Москва: Медицина; 1986. 495 с. [Veis M, Zembatyi A. Fizioterapiya [Phisiotheraphi]. Moscow: Meditsina; 1986. 495 p.]; Коршунов AM. Особенности течения и эффективность лечения болезни Паркинсона. Дисc. докт. мед. наук. Москва; 2002. 304 с. [Korshunov AM. Osobennosti techeniya i effektivnost' lecheniya bolezni Parkinsona. Diss. dokt. med. nauk [Features of a current and efficiency of treatment of a Parkinson’s disease: Dr. Diss. (Med. Sci.)]. Moscow; 2002. 304 p.]; Teasdale JD, Fogarty SJ. Differential effects of induced mood on retrieval of pleasant and unpleasant events from episodic memory. J Abnorm Psychol. 1979;88:248–57.; Русинов ВС, Гриндель ОМ, Болдырева ГН, акар ЕМ. Биопотенциалы мозга человека. Математический анализ. Москва: Медицина; 1987. С. 254. [Rusinov VS, Grindel' OM, Boldyreva GN, Vakar EM. Biopotentsialy mozga cheloveka. Matematicheskii analiz [Biopotentials of a brain of the person. Mathematical analysis]. Moscow: Meditsina; 1987. P. 254.]; Коптелов ЮМ, Гнездицкий ВВ. Анализ скальповых потенциальных полей и трехмерная локализация эквивалентных источников эпилептической активности мозга человека. Журнал невропатологии и психиатрии им. С.С. Корсакова. 1989;89(6):11. [Koptelov YuM, Gnezditskii VV. Analysis of skalp potential fields and three-dimensional localization of equivalent sources of epileptic activity of a brain of the person. Zhurnal nevropatologii i psikhiatrii im. S.S. Korsakova. 1989;89(6):11. (In Russ.)]; Gambarelli Y, Gurinel G, Cherrot L, Mattei M. Computerized axial Tomography (an anat. atlas of sections of the Human body. Anatomy-Radiology-Scannes). Berlin: Heidelbetg N.Y.; 1977.; Гриндель ОМ, Машеров ЕЛ, Воронов ВГ. Методы математического анализа ЭЭГ. Нейрофизиологические исследования в клинике. Москва: Антидор. 2001. С. 24–38. [Grindel' OM, Masherov EL, Voronov VG. Metody matematicheskogo analiza EEG. Neirofiziologicheskie issledovaniya v klinike [Methods of the mathematical analysis of EEG. Neurophysiological researches in clinic]. Moscow: Antidor. 2001. P. 24–38.]; Воронов ВГ, Щекутьев ГА, Гриндель ОМ. Пакет программ для статистического сравнения записей ЭЭГ. Материалы международной конференции «Клинические нейронауки: нейроизиология неврология, нейрохирургия», Украина, Крым, Гурзуф, июнь 2003. С. 22–24. [Voronov VG, Shchekut'ev GA, Grindel' OM. The software package for statistical comparison of records EEG. Materialy mezhdunarodnoi konferentsii «Klinicheskie neironauki: neiro-fiziologiya nevrologiya, neirokhirurgiya», Ukraina, Krym, Gurzuf, iyun' 2003 [Materials of the international conference «Clinical neurosciences: neurophysiology neurology, neurosurgery», Ukraine, Crimea, Gurzuf, June. 2003]. P. 22–24.]; Dimpfel W. Pharmacological modulation of dopaminergic brain activity and its reflection in spectral frequencies of the rat electropharmacogram. Neuropsychobiology. 2008;58(3–4):178–86. DOI: http://dx.doi.org/10.1159/000191124.; Babiloni C, De Pandis MF, Vecchio F, et al. Cortical sources of resting state electroencephalographic rhythms in Parkinson's disease related dementia and Alzheimer's disease. J Clin Neurophysiol. 2011;122(12):2355–64. DOI: http://dx.doi.org/10.1016/j.clinph.2011. 03.029.; Ploeger GE, Spruijt BM, Cools AR. Spatial localization in the Morris water maze in rats: acquisition is affected by intra-accumbens injections of the dopaminergic antagonist haloperidol. J Behav Neurosci. 1994;108:927–34. DOI: http://dx.doi.org/10.1037/0735-7044.108.5.927.; Ploeger GE, Willemen AP, Cools AR. Role of the nucleus accumbens in social memory in rats. J Brain Res Bull. 1991;26:23–7. DOI: http://dx.doi.org/10.1016/0361-9230(91)90187-O.; Cools AR, Ellenbroek B, Heeren D, Lubbers L. Use of high and low responders to novelty in rat studies on the role of the ventral striatum in radial maze performance: effects of intra-accumbens injections of sulpiride. Can J Physiol Pharmacol. 1993 May–Jun;71(5–6):335–42. DOI: http://dx.doi.org/10.1139/y93-052.; Setlow B, McGaugh JL. Sulpiride infused into the nucleus accumbens posttraining impairs memory of spatial water maze training. J Behav Neurosci. 1998;112:603–10. DOI: http://dx.doi.org/10.1037/0735-7044.112.3.603.; Coccurello R, Adriani W, Oliverio A, Mele A. Effect of intra accumbens dopamine receptor agents on reactivity to spatial and non-spatial changes in mice. Psychopharmacology. 2000;152:189–99. DOI: http://dx.doi.org/10.1007/s002130000515.; Mitchell JB, Gratton A. Involvement of mesolimbic dopamine neurons in sexual behaviors: implications for the neurobiology of motivation. J Rev Neurosci. 1994;5:317–29.; Saatman KE, Duhaime AC, Bullock R. Classification of traumatic brain injury for targeted therapies. J Neurotrauma. 2008;25(7):719–38. DOI: http://dx.doi.org/10.1089/neu.2008.0586.; Baldo BA, Kelley AE. Discrete neurochemical coding of distinguishable motivational processes: insights from nucleus accumbens control of feeding. Psychopharmacology. 2007;191:439–59. DOI: http://dx.doi.org/10.1007/s00213-007-0741-z.; Wickens JR, Budd CS, Hyland BI, Arbuthnott GW. Striatal contributions to reward and decision making: making sense of regional variations in a reiterated processing matrix. Ann NY Acad Sci. 2007;1104:192–212. DOI: http://dx.doi.org/10.1196/annals.1390.016.; Mura A, Feldon J. Spatial learning in rats is impaired after degeneration ofthe nigrostriatal dopaminergic system. Move Disord. 2003;18:860–71. DOI: http://dx.doi.org/10.1002/mds.10472.; Tamaru F. Disturbances in higher function in Parkinson's disease. J Eur Neurol. 1997;38(2):33–6.; Ridley RM, Cummings RM, Leow-Dyke A, Baker HF. Neglect of memory after dopaminergic lesions in monkeys. J Behav Brain Res. 2006;166:253–62. DOI: http://dx.doi.org/10. 1016/j.bbr.2005.08.007.; Giacino JT, Zacler ND. Outcome following severe brain injury: the comatose, vegetative and minimally responsive patient. J Head Traum Rehabil. 1995;10(1):40–56. DOI: http://dx.doi.org/10.1097/00001199-199502000-00006.

  11. 11
  12. 12
  13. 13
  14. 14
  15. 15
  16. 16
  17. 17
  18. 18
  19. 19
  20. 20