Εμφανίζονται 1 - 20 Αποτελέσματα από 34 για την αναζήτηση '"ГЕНОМНОЕ РЕДАКТИРОВАНИЕ"', χρόνος αναζήτησης: 0,75δλ Περιορισμός αποτελεσμάτων
  1. 1
  2. 2
  3. 3
    Academic Journal

    Συνεισφορές: The authors declare no funding for this study, Авторы заявляют об отсутствии финансирования при проведении исследования

    Πηγή: The Russian Archives of Internal Medicine; Том 15, № 4 (2025); 275-283 ; Архивъ внутренней медицины; Том 15, № 4 (2025); 275-283 ; 2411-6564 ; 2226-6704

    Περιγραφή αρχείου: application/pdf

    Relation: https://www.medarhive.ru/jour/article/view/2045/1430; https://www.medarhive.ru/jour/article/view/2045/1438; Grasemann H., Ratjen F.N. Cystic Fibrosis. The New England Journal of Medicine. 2023;389(18):1693-1707. doi:10.1056/NEJMra2216474.; López-Valdez J.A., Aguilar-Alonso L.A., Gándara-Quezada V. et al. Cystic fibrosis: current concepts. Boletin Medico del Hospital Infantil de Mexico. 2021;78(6):584-596. doi:10.24875/BMHIM.20000372.; Chen Q., Shen Y., Zheng J. A review of cystic fibrosis: Basic and clinical aspects. Animal Models and Experimental Medicine. 2021;4(3):220- 232. doi:10.1002/ame2.12180.; Farinha C.M., Callebaut I. Molecular mechanisms of cystic fibrosis — how mutations lead to misfunction and guide therapy. Bioscience Reports. 2022;42(7):1. doi:10.1042/BSR20212006.; Rafeeq M.M., Murad H.A.S. Cystic fibrosis: current therapeutic targets and future approaches. Journal of Translational Medicine. 2017;15(1):84. doi:10.1186/s12967-017-1193-9.; Elborn J.S., Konstan M.W., Taylor-Cousar J.L. et al. Empire-CF study: A phase 2 clinical trial of leukotriene A4 hydrolase inhibitor acebilustat in adult subjects with cystic fibrosis. Journal of Cystic Fibrosis. 2021;20(6):1026-1034. doi:10.1016/j.jcf.2021.08.007.; Konstan M.W., Polineni D., Chmiel J.F. et al. Efficacy and safety of LAU-7b in a Phase 2 trial in adults with cystic fibrosis. Journal of Cystic Fibrosis. 2024;24(1):83-90. doi:10.1016/j.jcf.2024.07.004.; Chmiel J.F., Flume P., Downey D.G. et al. Lenabasum JBT101- CF-001 Study Group. Safety and efficacy of lenabasum in a phase 2 randomized, placebo-controlled trial in adults with cystic fibrosis. Journal of Cystic Fibrosis. 2021;20(1):78-85. doi:10.1016/j.jcf.2020.09.008.; Яковлев Я.Я., Бурнышева О.В., Готлиб М.Л и др. Микробиота нижних дыхательных путей и ее чувствительность к антибактериальным препаратам у больных муковисцидозом детей. Мать и Дитя в Кузбассе. 2022;3(90):41-47. doi:10.24412/2686-7338-2022-3-41-47.; Fischer R., Schwarz C., Weiser R. et al. Evaluating the alginate oligosaccharide (OligoG) as a therapy for Burkholderia cepacia complex cystic fibrosis lung infection. Journal of Cystic Fibrosis. 2022;21(5):821-829. doi:10.1016/j.jcf.2022.01.003.; Burgener E.B., Moss R.B. Cystic fibrosis transmembrane conductance regulator modulators: precision medicine in cystic fibrosis. Current opinion in pediatrics. 2018;30(3):372-377. doi:10.1097/MOP.0000000000000627.; Ломунова М.А., Гершович П.М. Генная терапия муковисцидоза: достижения и перспективы. Acta Naturae. 2023;15(2):20-31. doi:10.32607/actanaturae.11708.; Wille P.T., Rosenjack J., Cotton C. et al. Identification of AAV Developed for cystic fibrosis gene therapy that restores CFTR function in human cystic fibrosis patient cells. Journal of Cystic Fibrosis. 2019;18(39). doi:10.1016/S1569-1993(19)30241-3.; Taylor-Cousar J.L., Mermis J., Gifford A. et al. WS06.01 CFTR transgene expression in airway epithelial cells following aerosolized administration of the AAV-based gene therapy 4D-710 to adults with cystic fibrosis lung disease. Journal of Cystic Fibrosis. 2024;23(1):11. doi:10.1016/S1569-1993(24)00140-1.; Смирнихина С.А., Лавров А.В. Современное патогенетическое лечение и разработка новых методов генной и клеточной терапии муковисцидоза. Гены и клетки. 2018;13(3):23-31. doi:10.23868/201811029.; Robinson E., MacDonald K.D., Slaughter K. et al. Lipid nanoparticledelivered chemically modified mRNA restores chloride secretion in cystic fibrosis. Molecular Therapy. 2018;26(8):2034-2046. doi:10.1016/j.ymthe.2018.05.014.; Rowe S.M., Zuckerman J.B., Dorgan D. et al. Inhaled mRNA therapy for treatment of cystic fibrosis: Interim results of a randomized, double-blind, placebo-controlled phase 1/2 clinical study. Journal of Cystic Fibrosis. 2023;22(4):656-664. doi:10.1016/j.jcf.2023.04.008.; Davies J.C., Polineni D., Boyd A.C. et al. Lentiviral Gene Therapy for Cystic Fibrosis. A Promising Approach and First-in-Human Trial. American Journal of Respiratory and Critical Care Medicine. 2024;210(12):1398-1408. doi:10.1164/rccm.202402-0389CI.; Ishimaru D., Bhattacharjee R., Casillas J. et al. WS05.01 RCT2100 rescues CFTR function in human bronchial epithelial cells and improves mucociliary clearance in CF ferrets. Journal of Cystic Fibrosis. 2024;23(1):9. doi:10.1016/S1569-1993(24)00131-0.; Lee J.A., Cho A., Huang E.N. et al. Gene therapy for cystic fibrosis: new tools for precision medicine. Journal of Translational Medicine. 2021;19:1-15. doi:10.1186/s12967-021-03099-4.; Sui H., Xu X., Su Y. et al. Gene therapy for cystic fibrosis: Challenges and prospects. Frontiers in pharmacology. 2022;13:1015926. doi:10.3389/fphar.2022.1015926.; Wang G. Genome Editing for Cystic Fibrosis. Cells. 2023;12(12):1555. doi:10.3390/cells12121555.; Janik E., Niemcewicz M., Ceremuga M. et al. Various Aspects of a Gene Editing System-CRISPR-Cas9. International Journal of Molecular Sciences. 2020;21(24):9604. doi:10.3390/ijms21249604.; Liu Q., Sun Q., Yu J. Gene Editing’s Sharp Edge: Understanding Zinc Finger Nucleases (ZFN), Transcription Activator-Like Effector Nucleases (TALEN) and Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR). Transactions on Materials, Biotechnology and Life Sciences. 2024;3:170-179. doi:10.62051/e47ayw75.; Becker S., Boch J. TALE and TALEN genome editing technologies. Gene and Genome Editing. 2021;2:100007. doi:10.1016/j.ggedit.2021.100007.; Kantor A., McClements M.E., MacLaren R.E. CRISPR-Cas9 DNA Base-Editing and Prime-Editing. International Journal of Molecular Sciences. 2020;21(17):6240. doi:10.3390/ijms21176240.; Scholefield J., Harrison P.T. Prime editing — an update on the field. Gene Therapy. 2021;28(7):396–401. doi:10.1038/s41434-021-00263-9.; Куцев С.И., Ижевская В.Л., Кондратьева Е.И. Таргетная терапия при муковисцидозе. Пульмонология. 2021;31(2):226-236. doi:10.18093/0869-0189-2021-31-2-226-236.; Aslam A.A., Sinha I.P., Southern K.W. Ataluren and similar compounds (specific therapies for premature termination codon class I mutations) for cystic fibrosis. Cochrane Database of Systematic Reviews. 2023;(3). doi:10.1002/14651858.CD012040.pub3.; Haq I., Almulhem M., Soars S. et al. Precision Medicine Based on CFTR Genotype for People with Cystic Fibrosis. Pharmacogenomics and Personalized Medicine. 2022;5(15):91-104. doi:10.2147/PGPM.S245603.; Каширская Н.Ю., Петрова Н.В., Зинченко Р.А. Клиническая эффективность и безопасность комбинированного препарата ивакафтор/лумакафтор у пациентов с муковисцидозом: обзор международных исследований. Вопросы современной педиатрии. 2021;20(6):558-566. doi:10.15690/vsp.v20i6S.2363.; Konstan M.W., McKone E.F., Moss R.B. et al. Assessment of safety and efficacy of long-term treatment with combination lumacaftor and ivacaftor therapy in patients with cystic fibrosis homozygous for the F508del-CFTR mutation (PROGRESS): a phase 3, extension study. The Lancet Respiratory Medicine. 2017;5(2):107–118. doi:10.1016/S2213-2600(16)30427-1.; Gavioli E.M., Guardado N., Haniff F. et al. A current review of the safety of cystic fibrosis transmembrane conductance regulator modulators. Journal of Clinical Pharmacy and Therapeutics. 2021;46(2):286–294. doi:10.1111/jcpt.13329.; Черменский А.Г., Гембицкая Т.Е., Орлов А.В. и др. Применение таргетной терапии лумакафтором/ивакафтором у больных муковисцидозом. Медицинский Совет. 2022;16(4):98-106. doi:10.21518/2079-701X-2022-16-4-98-106.; Taylor-Cousar J.L., Munck A., McKone E.F. et al. Tezacaftor-ivacaftor in patients with cystic fibrosis homozygous for Phe508del. The New England Journal of Medicine. 2017,377(21):2013-2023. doi:10.1056/NEJMoa1709846.; Bardin E., Pastor A., Semeraro M. et al. Modulators of CFTR. Updates on clinical development and future directions. European Journal of Medicinal Chemistry. 2021;213(3):113195. doi:10.1016/j.ejmech.2021.113195.; Scott C. Bell, Peter J. Barry, Kris De Boeck et al. CFTR activity is enhanced by the novel corrector GLPG2222, given with and without ivacaftor in two randomized trials. Journal of Cystic Fibrosis. 2019;18(5):700-707. doi:10.1016/j.jcf.2019.04.014.; Пятеркина О.Г., Карпова О.А., Бегиева Г.Р. и др. Региональный опыт наблюдения за детьми с муковисцидозом, получающими таргетную терапию, в Республике Татарстан. Пульмонология. 2024;34(2):277-282. doi:10.18093/0869-0189-2024-34-2-277-282.; Кондратьева Е.И., Одинаева Н.Д., Паснова Е.В. и др. Эффективность и безопасность тройной терапии (элексакафтор / тезакафтор / ивакафтор) у детей с муковисцидозом: 12-месячное наблюдение. Пульмонология. 2024;34(2):218-224. doi:10.18093/0869-0189-2024-34-2-218-224.; Поляков Д.П., Погодина А.А., Кондратьева Е.И. и др. Влияние таргетной терапии муковисцидоза на течение хронического риносинусита у ребенка: первый российский опыт. Российская оториноларингология. 2023;22(3):86–92. doi:10.18692/1810-4800-2023-3-86-92.; Keating C., Yonker L.M., Vermeulen F. et al. Vanzacaftor–tezacaftor– deutivacaftor versus elexacaftor–tezacaftor–ivacaftor in individuals with cystic fibrosis aged 12 years and older (SKYLINE Trials VX20-121-102 and VX20-121-103): results from two randomised, active-controlled, phase 3 trials. Lancet Respiratory Medicine. 2025. doi:10.1016/S2213-2600(24)00411-9.; Hoppe J.E., Ajay S Kasi, Pittman J.E. et al. Vanzacaftor–tezacaftor– deutivacaftor for children aged 6–11 years with cystic fibrosis (RIDGELINE Trial VX21-121-105): an analysis from a single-arm, phase 3 trial. Lancet Respiratory Medicine. 2025. doi:10.1016/S2213-2600(24)00407-7.; https://www.medarhive.ru/jour/article/view/2045

  4. 4
    Academic Journal

    Συνεισφορές: The work was supported by the Russian Science Foundation grant No. 24-15-00346, https://rscf.ru/project/ 24-15-00346/.

    Πηγή: Vavilov Journal of Genetics and Breeding; Том 29, № 2 (2025); 189-199 ; Вавиловский журнал генетики и селекции; Том 29, № 2 (2025); 189-199 ; 2500-3259 ; 10.18699/vjgb-25-20

    Περιγραφή αρχείου: application/pdf

    Relation: https://vavilov.elpub.ru/jour/article/view/4537/1927; Bauer D.E., Canver M.C., Orkin S.H. Generation of genomic deletions in mammalian cell lines via CRISPR/Cas9. J Vis Exp. 2015; 95:e52118. doi 10.3791/52118; Bonnycastle L.L., Swift A.J., Mansell E.C., Lee A., Winnicki E., Li E.S., Robertson C.C., Parsons V.A., Huynh T., Krilow C., Mohlke K.L., Erdos M.R., Narisu N., Collins F.S. Generation of human isogenic induced pluripotent stem cell lines with CRISPR prime editing. Cris J. 2024;7(1):53-67. doi 10.1089/crispr.2023.0066; Bourbon M., Alves A.C., Medeiros A.M., Silva S., Soutar A.K. Familial hypercholesterolaemia in Portugal. Atherosclerosis. 2008; 196(2):633-642. doi 10.1016/j.atherosclerosis.2007.07.019; Brooks I.R., Garrone C.M., Kerins C., Kiar C.S., Syntaka S., Xu J.Z., Spagnoli F.M., Watt F.M. Functional genomics and the future of iPSCs in disease modeling. Stem Cell Rep. 2022;17(5):1033-1047. doi 10.1016/j.stemcr.2022.03.019; Cerneckis J., Cai H., Shi Y. Induced pluripotent stem cells (iPSCs): molecular mechanisms of induction and applications. Signal Transduct Target Ther. 2024;9(1):112. doi 10.1038/s41392-024-01809-0; Chai A.C., Cui M., Chemello F., Li H., Chen K., Tan W., Atmanli A., McAnally J.R., Zhang Y., Xu L., Liu N., Bassel-Duby R., Olson E.N. Base editing correction of hypertrophic cardiomyopathy in human cardiomyocytes and humanized mice. Nat Med. 2023;29(2):401- 411. doi 10.1038/s41591-022-02176-5; Choppa P.C., Vojdani A., Tagle C., Andrin R., Magtoto L. Multiplex PCR for the detection of Mycoplasma fermentans, M. hominis and M. penetrans in cell cultures and blood samples of patients with chronic fatigue syndrome. Mol Cell Probes. 1998;12(5):301-308. doi 10.1006/mcpr.1998.0186; Cowan C.A., Klimanskaya I., McMahon J., Atienza J., Witmyer J., Zucker J.P., Wang S., Morton C.C., McMahon A.P., Powers D., Melton D.A. Derivation of embryonic stem-cell lines from human blastocysts. N Engl J Med. 2004;350(13):1353-1356. doi 10.1056/nejmsr040330; Ezhov M.V., Bazhan S.S., Ershova A.I., Meshkov A.N., Sokolov A.A., Kukharchuk V.V., Gurevich V.S., Voevoda M.I., Sergienko I.V., Shakhtshneider E.V., Pokrovsky S.N., Konovalov G.A., Leontyeva I.V., Konstantinov V.O., Shcherbakova M.Yu., Zakharova I.N., Balakhonova T.V., Filippov A.E., Akhmedzhanov N.M., Aleksandrova O.Yu., Lipovetsky B.M. Clinical guidelines for familial hypercholesterolemia. Ateroscleroz. 2019;15(1):58-98 (in Russian); Ference B.A., Ginsberg H.N., Graham I., Ray K.K., Packard C.J., Bruckert E., Hegele R.A., Krauss R.M., Raal F.J., Schunkert H., Watt G.F., Borén J., Fazio S., Horton J.D., Masana L., Nicholls S.J., Nordestgaard B.G., Van De Sluis B., Taskinen M.R., Tokgözoǧlu L., Landmesser U., Laufs U., Wiklund O., Stock J.K., Chapman M.J., Catapano A.L. Low-density lipoproteins cause atherosclerotic cardiovascular disease. 1. Evidence from genetic, epidemiologic, and clinical studies. A consensus statement from the European Atherosclerosis Society Consensus Panel. Eur Heart J. 2017;38(32):2459- 2472. doi 10.1093/eurheartj/ehx144; Fularski P., Hajdys J., Majchrowicz G., Stabrawa M., Młynarska E., Rysz J., Franczyk B. Unveiling familial hypercholesterolemia – review, cardiovascular complications, lipid-lowering treatment and its efficacy. Int J Mol Sci. 2024;25(3):1637. doi 10.3390/ijms25031637; Gaudelli N.M., Komor A.C., Rees H.A., Packer M.S., Badran A.H., Bryson D.I., Liu D.R. Programmable base editing of A•T to G•C in genomic DNA without DNA cleavage. Nature. 2017;551(7681): 464-471. doi 10.1038/nature24644; Grigor’eva E.V., Malakhova A.A., Yarkova E.S., Minina J.M., Vyatkin Y.V., Nadtochy J.A., Khabarova E.A., Rzaev J.A., Medvedev S.P., Zakian S.M. Generation and characterization of two induced pluripotent stem cell lines (ICGi052-A and ICGi052-B) from a patient with frontotemporal dementia with parkinsonism-17 associated with the pathological variant c.2013T>G in the MAPT gene. Vavilovskii Zhurnal Genetiki i Selektsii = Vavilov J Genet Breed. 2024;28(7):679-687. doi 10.18699/vjgb-24-76; Gu J., Gupta R.N., Cheng H.K., Xu Y., Raal F.J. Current treatments for the management of homozygous familial hypercholesterolaemia: a systematic review and commentary. Eur J Prev Cardiol. 2024; 31(15):1833-1849. doi 10.1093/eurjpc/zwae144; Harada-Shiba M. Impact of familial hypercholesterolemia diagnosis in real-world data. J Atheroscler Thromb. 2023;30(10):1303. doi 10.5551/jat.ED241; Hendricks-Sturrup R.M., Clark-Locascio J., Lu C.Y. A global review on the utility of genetic testing for familial hypercholesterolemia. J Pers Med. 2020;10(2):23. doi 10.3390/pm10020023; Hofer M., Lutolf M.P. Engineering organoids. Nat Rev Mater. 2021; 6(5):402-420. doi 10.1038/s41578-021-00279-y; Hopkins P.N., Toth P.P., Ballantyne C.M., Rader D.J. Familial hypercholesterolemias: prevalence, genetics, diagnosis and screening recommendations from the national lipid association expert panel on familial hypercholesterolemia. J Clin Lipidol. 2011;5(3):S9. doi 10.1016/j.jacl.2011.03.452; Hu J.H., Miller S.M., Geurts M.H., Tang W., Chen L., Sun N., Zeina C.M., Gao X., Rees H.A., Lin Z., Liu D.R. Evolved Cas9 variants with broad PAM compatibility and high DNA specificity. Nature. 2018;556(7699):57-63. doi 10.1038/nature26155; Huang C.C., Niu D.M., Charng M.J. Genetic analysis in a Taiwanese cohort of 750 index patients with clinically diagnosed familial hypercholesterolemia. J Atheroscler Thromb. 2022;29(5):639-653. doi 10.5551/jat.62773; Jannes C.E., Santos R.D., de Souza Silva P.R., Turolla L., GagliardiA.C.M., Marsiglia J.D.C., ChacraA.P., Miname M.H., Rocha V.Z., Filho W.S., Krieger J.E., Pereira A.C. Familial hypercholesterolemia in Brazil: cascade screening program, clinical and genetic aspects. Atherosclerosis. 2015;238(1):101-107. doi 10.1016/j.atherosclerosis.2014.11.009; Kannan S., Farid M., Lin B.L., Miyamoto M., Kwon C. Transcriptomic entropy benchmarks stem cell-derived cardiomyocyte maturation against endogenous tissue at single cell level. PLoS Comput Biol. 2021;17(9):e1009305. doi 10.1371/journal.pcbi.1009305; Kawatani K., Nambara T., Nawa N., Yoshimatsu H., Kusakabe H., Hirata K., Tanave A., Sumiyama K., Banno K., Taniguchi H., Arahori H., Ozono K., Kitabatake Y. A human isogenic iPSC-derived cell line panel identifies major regulators of aberrant astrocyte proliferation in Down syndrome. Commun Biol. 2021;4(1):730. doi 10.1038/s42003-021-02242-7; Koblan L.W., Erdos M.R., Wilson C., Cabral W.A., Levy J.M., Xiong Z.M., Tavarez U.L., Davison L.M., Gete Y.G., Mao X., Newby G.A., Doherty S.P., Narisu N., Sheng Q., Krilow C., Lin C.Y., Gordon L.B., Cao K., Collins F.S., Brown J.D., Liu D.R. In vivo base editing rescues Hutchinson-Gilford progeria syndrome in mice. Nature. 2021;589(7843):608-614. doi 10.1038/s41586-020-03086-7; Komor A.C., Kim Y.B., Packer M.S., Zuris J.A., Liu D.R. Programmable editing of a target base in genomic DNA without doublestranded DNA cleavage. Nature. 2016;533(7603):420-424. doi 10.1038/nature17946; Lawlor K.T., Vanslambrouck J.M., Higgins J.W., Chambon A., Bishard K., Arndt D., Er P.X., Wilson S.B., Howden S.E., Tan K.S., Li F., Hale L.J., Shepherd B., Pentoney S., Presnell S.C., Chen A.E., Little M.H. Cellular extrusion bioprinting improves kidney organoid reproducibility and conformation. Nat Mater. 2021;20(2):260-271. doi 10.1038/s41563-020-00853-9; Liang Y., Sun X., Duan C., Zhou Y., Cui Z., Ding C., Gu J., Mao S., Ji S., Chan H.F., Tang S., Chen J. Generation of a gene-corrected human iPSC line (CSUASOi004-A-1) from a retinitis pigmentosa patient with heterozygous c.2699G>A mutation in the PRPF6 gene. Stem Cell Res. 2022;64:103572. doi 10.1016/j.scr.2022.102911; Malakhova A.A., Grigor’eva E.V., Pavlova S.V., Malankhanova T.B., Valetdinova K.R., Vyatkin Y.V., Khabarova E.A., Rzaev J.A., Zakian S.M., Medvedev S.P. Generation of induced pluripotent stem cell lines ICGi021-A and ICGi022-A from peripheral blood mononuclear cells of two healthy individuals from Siberian population. Stem Cell Res. 2020;48:101952. doi 10.1016/j.scr.2020.101952; Meshkov A., Ershova A., Kiseleva A., Zotova E., Sotnikova E., Petukhova A., Zharikova A., Malyshev P., Rozhkova T., Blokhina A., Limonova A., Ramensky V., Divashuk M., Khasanova Z., Bukaeva A., Kurilova O., Skirko O., Pokrovskaya M., Mikova V., Snigir E., Akinshina A., Mitrofanov S., Kashtanova D., Makarov V., Kukharchuk V., Boytsov S., Yudin S., Drapkina O. The LDLR, APOB, and PCSK9 variants of index patients with familial hypercholesterolemia in Russia. Genes. 2021;12(1):66. doi 10.3390/genes12010066; Mohd Nor N.S., Al-Khateeb A.M., Chua Y.A., Mohd Kasim N.A., Mohd Nawawi H. Heterozygous familial hypercholesterolaemia in a pair of identical twins: a case report and updated review. BMC Pediatr. 2019;19(1):106. doi 10.1186/S12887-019-1474-y/tables/2; Nandy K., Babu D., Rani S., Joshi G., Ijee S., George A., Palani D., Premkumar C., Rajesh P., Vijayanand S., David E., Murugesan M., Velayudhan S.R. Efficient gene editing in induced pluripotent stem cells enabled by an inducible adenine base editor with tunable expression. Sci Rep. 2023;13(1):21953. doi 10.1038/s41598-023-42174-2; Nazarenko M.S., Sleptcov A.A., Zarubin A.A., Salakhov R.R., Shevchenko A.I., Tmoyan N.A., Elisaphenko E.A., Zubkova E.S., Zheltysheva N.V., Ezhov M.V., Kukharchuk V.V., Parfyonova Y.V., Zakian S.M., Zakharova I.S. Calling and phasing of single-nucleotide and structural variants of the LDLR gene using Oxford Nano- pore MinION. Int J Mol Sci. 2023;24(5):4471. doi 10.3390/ijms24054471; Newby G.A., Yen J.S., Woodard K.J., Mayuranathan T., Lazzarotto C.R., Li Y., Sheppard-Tillman H., Porter S.N., Yao Y., Mayberry K., Everette K.A., Jang Y., Podracky C.J., Thaman E., Lechauve C., Sharma A., Henderson J.M., Richter M.F., Zhao K.T., Miller S.M., Wang T., Koblan L.W., McCaffrey A.P., Tisdale J.F., Kalfa T.A., Pruett-Miller S.M., Tsai S.Q., Weiss M.J., Liu D.R. Base editing of haematopoietic stem cells rescues sickle cell disease in mice. Nature. 2021;595(7866):295-302. doi 10.1038/S41586-021-03609-w; Niemitz E. Isogenic iPSC-derived models of disease. Nat Genet. 2014;46(1):7. doi 10.1038/ng.2864; Okano H., Morimoto S. iPSC-based disease modeling and drug discovery in cardinal neurodegenerative disorders. Cell Stem Cell. 2022; 29(2):189-208. doi 10.1016/j.stem.2022.01.007; Okita K., Yamakawa T., Matsumura Y., Sato Y., Amano N., Watanabe A., Goshima N., Yamanaka S. An efficient nonviral method to generate integration-free human-induced pluripotent stem cells from cord blood and peripheral blood cells. Stem Cells. 2013;31(3): 458-466. doi 10.1002/stem.1293; Omer L., Hudson E.A., Zheng S., Hoying J.B., Shan Y., Boyd N.L. CRISPR correction of a homozygous low-density lipoprotein receptor mutation in familial hypercholesterolemia induced pluripotent stem cells. Hepatol Commun. 2017;1(9):886-898. doi 10.1002/hep4.1110; Palacios L., Grandoso L., Cuevas N., Olano-Martín E., Martinez A., Tejedor D., Stef M. Molecular characterization of familial hypercholesterolemia in Spain. Atherosclerosis. 2012;221(1):137-142. doi 10.1016/j.atherosclerosis.2011.12.021; Pavlova S.V., Shayakhmetova L.S., Pronyaeva K.A., Shulgina A.E., Zakian S.M., Dementyeva E.V. Generation of induced pluripotent stem cell lines ICGi022-A-3, ICGi022-A-4, and ICGi022-A-5 with p.Asn515del mutation introduced in MYBPC3 using CRISPR/Cas9. Russ J Dev Biol. 2023;54:96-103. doi 10.1134/S1062360423010113; Porto E.M., Komor A.C., Slaymaker I.M., Yeo G.W. Base editing: advances and therapeutic opportunities. Nat Rev Drug Discov. 2020; 19(12):839-859. doi 10.1038/s41573-020-0084-6; Ray K.K., Ference B.A., Séverin T., Blom D., Nicholls S.J., Shiba M.H., Almahmeed W., Alonso R., Daccord M., Ezhov M., Olmo R.F., Jankowski P., Lanas F., Mehta R., Puri R., Wong N.D., Wood D., Zhao D., Gidding S.S., Virani S.S., Lloyd-Jones D., Pinto F., Perel P., Santos R.D. World Heart Federation Cholesterol Roadmap 2022. Glob Heart. 2022;17(1):75. doi 10.5334/gh.1154; Ray K.K., Pillas D., Hadjiphilippou S., Khunti K., Seshasai S.R.K., Vallejo-Vaz A.J., Neasham D., Addison J. Premature morbidity and mortality associated with potentially undiagnosed familial hypercholesterolemia in the general population. Am J Prev Cardiol. 2023; 15:100580. doi 10.1016/j.ajpc.2023.100580; Renner H., Grabos M., Becker K.J., Kagermeier T.E., Wu J., Otto M., Peischard S., Zeuschner D., Tsytsyura Y., Disse P., Klingauf J., Leidel S.A., Seebohm G., Schöler H.R., Bruder J.M. A fully automated high-throughput workflow for 3D-based chemical screening in human midbrain organoids. eLife. 2020;9:e52904. doi 10.7554/eLife.52904; Rothgangl T., Dennis M.K., Lin P.J.C., Oka R., Witzigmann D., Villiger L., Qi W., Hruzova M., Kissling L., Lenggenhager D., Borrelli C., Egli S., Frey N., Bakker N., Walker J.A., Kadina A.P., Victorov D.V., Pacesa M., Kreutzer S., Kontarakis Z., Moor A., Jinek M., Weissman D., Stoffel M., van Boxtel R., Holden K., Pardi N., Thöny B., Häberle J., Tam Y.K., Semple S.C., Schwank G. In vivo adenine base editing of PCSK9 in macaques reduces LDL cholesterol levels. Nat Biotechnol. 2021;39(8):949-957. doi 10.1038/s41587-021-00933-4; Semenova A.E., Sergienko I.V., García-Giustiniani D., Monserrat L., Popova A.B., Nozadze D.N., Ezhov M.V. Verification of underlying genetic cause in a cohort of Russian patients with familial hypercholesterolemia using targeted next generation sequencing. J Cardiovasc Dev Dis. 2020;7(2):16. doi 10.3390/jcdd7020016; Setia N., Saxena R., Arora A., Verma I.C. Spectrum of mutations in homozygous familial hypercholesterolemia in India, with four novel mutations. Atherosclerosis. 2016;255:31-36. doi 10.1016/j.atherosclerosis.2016.10.028; Shakhtshneider E., Ivanoshchuk D., Timoshchenko O., Orlov P., Semaev S., Valeev E., Goonko A., Ladygina N., Voevoda M. Analysis of rare variants in genes related to lipid metabolism in patients with familial hypercholesterolemia in Western Siberia (Russia). J Pers Med. 2021;11(11):1232. doi 10.3390/jpm11111232; Sharifi M., Walus-Miarka M., Idzior-Waluś B., Malecki M.T., Sanak M., Whittall R., Li K.W., Futema M., Humphries S.E. The genetic spectrum of familial hypercholesterolemia in south-eastern Poland. Metabolism. 2016;65(3):48-53. doi 10.1016/j.metabol.2015.10.018; Siegner S.M., Karasu M.E., Schröder M.S., Kontarakis Z., Corn J.E. PnB Designer: a web application to design prime and base editor guide RNAs for animals and plants. BMC Bioinformatics. 2021; 22(1):101. doi 10.1186/s12859-021-04034-6; Subramanian A., Sidhom E.H., Emani M., Vernon K., Sahakian N., Zhou Y., Kost-Alimova M., Slyper M., Waldman J., Dionne D., Nguyen L.T., Weins A., Marshall J.L., Rosenblatt-Rosen O., Regev A., Greka A. Single cell census of human kidney organoids shows reproducibility and diminished off-target cells after transplantation. Nat Commun. 2019;10(1):5462. doi 10.1038/S41467-019-13382-0; Südhof T.C., Goldstein J.L., Brown M.S., Russell D.W. The LDL receptor gene: a mosaic of exons shared with different proteins. Science. 1985;228(4701):815-822. doi 10.1126/science.2988123; Talmud P.J., Futema M., Humphries S.E. The genetic architecture of the familial hyperlipidaemia syndromes: rare mutations and common variants in multiple genes. Curr Opin Lipidol. 2014;25(4):274-281. doi 10.1097/MOL.0000000000000090; Thormaehlen A.S., Schuberth C., Won H.H., Blattmann P., JoggerstThomalla B., Theiss S., Asselta R., Duga S., Merlini P.A., Ardissino D., Lander E.S., Gabriel S., Rader D.J., Peloso G.M., Pepperkok R., Kathiresan S., Runz H. Systematic cell-based phenotyping of missense alleles empowers rare variant association studies: a case for LDLR and myocardial infarction. PLoS Genet. 2015; 11(2):e1004855. doi 10.1371/journal.pgen.1004855; Tichý L., Freiberger T., Zapletalová P., Soška V., Ravčuková B., Fajkusová L. The molecular basis of familial hypercholesterolemia in the Czech Republic: spectrum of LDLR mutations and genotypephenotype correlations. Atherosclerosis. 2012;223(2):401-408. doi 10.1016/j.atherosclerosis.2012.05.014; Vaskova E.A., Medvedev S.P., Sorokina A.E., Nemudryy A.A., Elisaphenko E.A., Zakharova I.S., Shevchenko A.I., Kizilova E.A., ZhelezovaA.I., Evshin I.S., Sharipov R.N., Minina J.M., Zhdanova N.S., Khegay I.I., Kolpakov F.A., Sukhikh G.T., Pokushalov E.A., Karaskov A.M., Vlasov V.V., Ivanova L.N., Zakian S.M. Transcriptome characteristics and X-chromosome inactivation status in cultured rat pluripotent stem cells. Stem Cells Dev. 2015;24(24):2912-2924. doi 10.1089/scd.2015.0204; Wang H., Luo Y., Li J., Guan J., Yang S., Wang Q. Generation of a gene corrected human isogenic iPSC line (CPGHi001-A-1) from a hearing loss patient with the TMC1 p.M418K mutation using CRISPR/Cas9. Stem Cell Res. 2022;60:102736. doi 10.1016/j.scr.2022.102736; Zakharova I.S., Shevchenko A.I., Tmoyan N.A., Elisaphenko E.A., Zubkova E.S., SleptcovA.A., Nazarenko M.S., Ezhov M.V., Kukharchuk V.V., Parfyonova Y.V., Zakian S.M. Induced pluripotent stem cell line ICGi036-A generated by reprogramming peripheral blood mononuclear cells from a patient with familial hypercholesterolemia caused due to compound heterozygous p.Ser177Leu/p.Cys352Arg mutations in LDLR. Stem Cell Res. 2022a;59:102653. doi 10.1016/j.scr.2022.102653; Zakharova I.S., Shevchenko A.I., Tmoyan N.A., Elisaphenko E.A., Kalinin A.P., Sleptcov A.A., Nazarenko M.S., Ezhov M.V., Kukharchuk V.V., Parfyonova Y.V., Zakian S.M. Induced pluripotent stem cell line ICGi037-A, obtained by reprogramming peripheral blood mononuclear cells from a patient with familial hypercholesterolemia due to heterozygous p.Trp443Arg mutations in LDLR. Stem Cell Res. 2022b;60:102703. doi 10.1016/j.scr.2022.102703; Zakharova I.S., Shevchenko A.I., Tmoyan N.A., Elisaphenko E.A., Zubkova E.S., SleptcovA.A., Nazarenko M.S., Ezhov M.V., Kukharchuk V.V., Parfyonova Y.V., Zakian S.M. Induced pluripotent stem cell line ICGi038-A, obtained by reprogramming peripheral blood mononuclear cells from a patient with familial hypercholesterolemia due to compound heterozygous c.1246C>T/c.940+3_940+6del mutations in LDLR. Stem Cell Res. 2022c;60:102702. doi 10.1016/j.scr.2022.102702; Zakharova I.S., Shevchenko A.I., Arssan M.A., Sleptcov A.A., Nazarenko M.S., Zarubin A.A., Zheltysheva N.V., Shevchenko V.A., Tmoyan N.A., Saaya S.B., Ezhov M.V., Kukharchuk V.V., Parfyonova Y.V., Zakian S.M. IPSC-derived endothelial cells reveal LDLR dysfunction and dysregulated gene expression profiles in familial hypercholesterolemia. Int J Mol Sci. 2024a;25(2):689. doi 10.3390/ijms25020689; Zakharova I.S., Shevchenko A.I., Zakian S.M. Familial hypercholesterolemia: current insight and challenges in its modelling. Pisma v Vavilovskii Zhurnal Genetiki i Selektsii = Letters to Vavilov Journal of Genetics and Breeding. 2024b;10(1):5-14. doi 10.18699/letvjgb-2024-10-2 (in Russian); https://vavilov.elpub.ru/jour/article/view/4537

  5. 5
    Academic Journal

    Πηγή: Vavilov Journal of Genetics and Breeding; Том 29, № 2 (2025); 279-289 ; Вавиловский журнал генетики и селекции; Том 29, № 2 (2025); 279-289 ; 2500-3259 ; 10.18699/vjgb-25-20

    Περιγραφή αρχείου: application/pdf

    Relation: https://vavilov.elpub.ru/jour/article/view/4547/1935; Alton E.W.F.W., Armstrong D.K., Ashby D., Bayfield K.J., Bilton D., Bloomfield E.V., Boyd A.C., … Waller M.D., Wasowicz M.Y., Wilson J.M., Wolstenholme-Hogg P., UK Cystic Fibrosis Gene Therapy Consortium. Repeated nebulisation of non-viral CFTR gene therapy in patients with cystic fibrosis: a randomised, double-blind, placebocontrolled, phase 2b trial. Lancet Respir Med. 2015;3(9):684-691. doi 10.1016/S2213-2600(15)00245-3; Amelina E.L., Krasovskiy S.A., Usacheva M.V., Krylova N.A. Pathogenic treatment of cystic fibrosis: the first clinical case in Russia. Pulmonologiya = Russian Pulmonology. 2017;27(2):298-301. doi 10.18093/0869-0189-2017-27-2-298-301 (in Russian); Amelina E.L., Krasovskiy S.A., Shumkova G.L., Krylova N.A. Тargeted therapy for CF patients with F508del/F508del genotype. Pulmonologiya = Russian Pulmonology. 2019;29(2):235-238. doi 10.18093/0869-0189-2019-29-2-235-238 (in Russian); Bell S.C., Mall M.A., Gutierrez H., Macek M., Madge S., Davies J.C., Burgel P.R., … Southern K.W., Sivam S., Stephenson A.L., Zampoli M., Ratjen F. The future of cystic fibrosis care: a global perspective. Lancet Respir Med. 2020;8(1):65-124. doi 10.1016/S22132600(19)30337-6; Bengtson C., Silswal N., Baumlin N., Yoshida M., Dennis J., Yerrathota S., Kim M., Salathe M. The CFTR amplifier nesolicaftor rescues TGF-β1 inhibition of modulator-corrected F508del CFTR function. Int J Mol Sci. 2022;23(18):10956. doi 10.3390/ijms231810956; Bessonova L., Volkova N., Higgins M., Bengtsson L., Tian S., Simard C., Konstan M.W., Sawicki G.S., Sewall A., Nyangoma S., Elbert A., Marshall B.C., Bilton D. Data from the US and UK cystic fibrosis registries support disease modification by CFTR modulation with ivacaftor. Thorax. 2018;73(8):731-740. doi 10.1136/thoraxjnl-2017-210394; Boyle M.P., Bell S.C., Konstan M.W., McColley S.A., Rowe S.M., Rietschel E., Huang X., Waltz D., Patel N.R., Rodman D.; VX09809-102 study group. A CFTR corrector (lumacaftor) and a CFTR potentiator (ivacaftor) for treatment of patients with cystic fibrosis who have a phe508del CFTR mutation: a phase 2 randomised controlled trial. Lancet Respir Med. 2014;2(7):527-538. doi 10.1016/S2213-2600(14)70132-8; Cao H., Ouyang H., Laselva O., Bartlett C., Zhou Z.P., Duan C., Gunawardena T., Avolio J., Bear C.E., Gonska T., Hu J., Moraes T.J. A helper-dependent adenoviral vector rescues CFTR to wildtype functional levels in cystic fibrosis epithelial cells harbouring class I mutations. Eur Respir J. 2020;56(5):2000205. doi 10.1183/13993003.00205-2020; Dechecchi M.C., Tamanini A., Cabrini G. Molecular basis of cystic fibrosis: from bench to bedside. Ann Transl Med. 2018;6(17):334. doi 10.21037/atm.2018.06.48; Egan M.E. Emerging technologies for cystic fibrosis transmembrane conductance regulator restoration in all people with CF. Pediatr Pulmonol. 2021;56(1):32-39. doi 10.1002/ppul.2496; Elborn J.S. Cystic fibrosis. Lancet. 2016;388(10059):2519-2531. doi 10.1016/S0140-6736(16)00576-6; Fanen P., Wohlhuter-Haddad A., Hinzpeter A. Genetics of cystic fibrosis: CFTR mutation classifications toward genotype-based CF therapies. Int J Biochem Cell Biol. 2014;52:94-102. doi 10.1016/j.biocel.2014.02.023; Flume P.A., Liou T.G., Borowitz D.S., Li H., Yen K., Ordoñez C.L., Geller D.E.; VX 08-770-104 Study Group. Ivacaftor in subjects with cystic fibrosis who are homozygous for the F508del-CFTR mutation. Chest. 2012;142(3):718-724. doi 10.1378/chest.11-2672; Gembitskaya T.E., Chermensky A.G., Boytsova E.P. Cystic fibrosis today: progress and problems, promises of etiopathogenetic therapy. Vrach = The Doctor. 2012;2:5-8 (in Russian); Ginter E.K. Gene therapy of hereditary diseases. Voprosy Meditsinskoi Khimii. 2000;46(3):264-278 (in Russian); Gorinova Yu.V., Simonova O.I., Lazareva A.V., Chernevich V.P., Smirnov I.E. Experience of the sustainable use of inhalations of tobramycin solution in chronic Pseudomonas aeruginosa infection in children with cystic fibrosis. Rossijskij Pediatricheskij Zhurnal = Russ Pediatr J. 2015;18(3):50-53 (in Russian); Hanssens L.S., Duchateau J., Casimir G.J. CFTR protein: not just a chloride channel? Cells. 2021;10(11):2844. doi 10.3390/cells10112844; Holkers M., Maggio I., Liu J., Janssen J.M., Miselli F., Mussolino C., Recchia A., Cathomen T., Gonçalves M.A. Differential integrity of TALE nuclease genes following adenoviral and lentiviral vector gene transfer into human cells. Nucleic Acids Res. 2013;41(5):e63. doi 10.1093/nar/gks1446; Kashirskaya N.Yu., Kapranov N.I. Experience in the treatment of exocrine pancreatic insufficiency in cystic fibrosis in Russia. Russ Med J. 2011;19(7):476-484 (in Russian); Kashirskaya N.Yu., Kapranov N.I. Modern pharmacotherapeutic approaches to the treatment of cystic fibrosis. Farmateka. 2014; 3(276):38-43 (in Russian); Keating D., Marigowda G., Burr L., Daines C., Mall M.A., McKone E.F., Ramsey B.W., Rowe S.M., Sass L.A., Tullis E., McKee C.M., Moskowitz S.M., Robertson S., Savage J., Simard C., Van Goor F., Waltz D., Xuan F., Young T., Taylor-Cousar J.L.; VX16-445-001 Study Group. VX-445 – Tezacaftor-ivacaftor in patients with cystic fibrosis and one or two Phe508del alleles. N Engl J Med. 2018;379(17):1612-1620. doi 10.1056/NEJMoa1807120; Kerem E., Konstan M.W., De Boeck K., Accurso F.J., Sermet-Gaudelus I., Wilschanski M., Elborn J.S., Melotti P., Bronsveld I., Fajac I., Malfroot A., Rosenbluth D.B., Walker P.A., McColley S.A., Knoop C., Quattrucci S., Rietschel E., Zeitlin P.L., Barth J., Elfring G.L., Welch E.M., Branstrom A., Spiegel R.J., Peltz S.W., Ajayi T., Rowe S.M.; Cystic Fibrosis Ataluren Study Group. Ataluren for the treatment of nonsense-mutation cystic fibrosis: a randomised, double-blind, placebo-controlled phase 3 trial. Lancet Respir Med. 2014;2(7):539-547. doi 10.1016/S2213-2600(14)70100-6; Koehler D.R., Sajjan U., Chow Y.H., Martin B., Kent G., TanswellA.K., McKerlie C., Forstner J.F., Hu J. Protection of Cftr knockout mice from acute lung infection by a helper-dependent adenoviral vector expressing Cftr in airway epithelia. Proc Natl Acad Sci USA. 2003; 100(26):15364-15369. doi 10.1073/pnas.2436478100; Kondratieva E.I., Kashirskaya N.Yu., Kapranov N.I. (Eds.) Cystic Fibrosis: Definition, Diagnostic Criteria, Therapy. Moscow: BORGES Company Publ., 2018 (in Russian); Krasnova M.G., Melianovskaya Y.L., Krasovskiy S.A., Bulatenko N.V., Efremova A.S., Bukharova T.B., Goldshtein D.V. Description of the clinical picture and assessment of functional activity of the CFTR channel in a patient with a complex allele [S466X; R1070Q]. Pulmonologiya = Russ Pulmonology J. 2023;33(2):233-242. doi 10.18093/0869-0189-2023-33-2-233-242 (in Russian); Krasnovidova A.E., Simonova O.I., Chernevich V.P., Pakhomov A.V., Reykh A.P., Pushkov A.A. Genotype-phenotype correlation in siblings with cystic fibrosis. Rossijskij Pediatricheskij Zhurnal = Russ Pediatr J. 2023;26(3):159-167. doi 10.46563/1560-9561-2023-263-159-167 (in Russian); Lee J.A., Cho A., Huang E.N., Xu Y., Quach H., Hu J., Wong A.P. Gene therapy for cystic fibrosis: new tools for precision medicine. J Transl Med. 2021;19(1):452. doi 10.1186/s12967-021-03099-4; Lomunova M.A., Gershovich P.M. Gene therapy for fibrosis: recent advances and future prospects. Acta Naturae. 2023;15(2):20-31. doi 10.32607/actanaturae.11708; Maule G., Arosio D., Cereseto A. Gene therapy for cystic fibrosis: progress and challenges of genome editing. Int J Mol Sci. 2020;21(11): 3903. doi 10.3390/ijms21113903; Moran O. On the structural organization of the intracellular domains of CFTR. Int J Biochem Cell Biol. 2014;52:7-14. doi 10.1016/j.biocel.2014.01.024; Olveira C., Padilla A., Dorado A., Contreras V., Garcia-Fuentes E., Rubio-Martin E., Porras N., Doña E., Carmona A., Olveira G. Inflammation and oxidation biomarkers in patients with cystic fibrosis: the influence of azithromycin. Eurasian J Med. 2017;49(2):118-123. doi 10.5152/eurasianjmed.2017.17010; OMIM.org [Internet]. Online Mendelian Inheritance in Man®. [cited 2023 Aug 28]. Available from: https://www.omim.org/; Piehler L., Thalemann R., Lehmann C., Thee S., Röhmel J., Syunyaeva Z., Stahl M., Mall M.A., Graeber S.Y. Effects of elexacaftor/ tezacaftor/ivacaftor therapy on mental health of patients with cystic fibrosis. Front Pharmacol. 2023;14:1179208. doi 10.3389/fphar.2023.1179208; Rafeeq M.M., Murad H.A.S. Cystic fibrosis: current therapeutic targets and future approaches. J Transl Med. 2017;15(1):84-92. doi 10.1186/s12967-017-1193-9; Ren H.Y., Grove D.E., De La Rosa O., Houck S.A., Sopha P., Van Goor F., Hoffman B.J., Cyr D.M. VX-809 corrects folding defects in cystic fibrosis transmembrane conductance regulator protein through action on membrane-spanning domain 1. Mol Biol Cell. 2013;24(19):3016-3024. doi 10.1091/mbc.E13-05-0240; Rommens J.M., Iannuzzi M.C., Kerem B., Drumm M.L., Melmer G., Dean M., Rozmahel R., Cole J.L., Kennedy D., Hidaka N., Zsiga M., Buchwald M., Tsui L.-C., Riordan J.R., Collins F.S. Identification of the cystic fibrosis gene: chromosome walking and jumping. Science. 2006;245(4922):1059-1065. doi 10.1126/science.2772657; Sherman V.D., Kapranov N.I., Kashirskaya N.Yu. Dornase alpha (Pulmozyme) for the complex treatment of bronchopulmonary process in cystic fibrosis patients. Farmateka. 2011;11(224):42-45 (in Russian); Simonova O.I., Gorinova Yu.V., Chernevich V.P. Cystic fibrosis: a breakthrough in 21st-century therapy. Rossijskij Pediatricheskij Zhurnal = Russ Pediatr J. 2020;23(1):35-41. doi 10.18821/15609561-2020-23-1-35-41 (in Russian); Smirnikhina S.A., Lavrov V.A. Modern pathogenesis-based methods and development of new gene and cell-based methods for cystic fibrosis treatment. Genes Cells. 2018;13(3):23-31. doi 10.23868/201811029 (in Russian); Smirnikhina S.A., Kondratyeva E.V., Anuchina A.A., Zaynitdinova M.I., Lavrov A.V. Modeling of cystic fibrosis in HEK293T cell culture and development of a method for the correction of F508del mutation. Medicinskij Vestnik Severnogo Kavkaza = Medical News of North Caucasus. 2020;15(2):158-162. doi 10.14300/mnnc.2020.15038 (in Russian); Spielberg D.R., Clancy J.P. Cystic fibrosis and its management through established and emerging therapies. Annu Rev Genomics Hum Genet. 2016;17:155-175. doi 10.1146/annurev-genom-090314-050024; Sui H., Xu X., Su Y., Gong Z., Yao M., Liu X., Zhang T., Jiang Z., Bai T., Wang J., Zhang J., Xu C., Luo M. Gene therapy for cystic fibrosis: challenges and prospects. Front Pharmacol. 2022;13:1015926. doi 10.3389/fphar.2022.1015926; Suzuki S., Crane A.M., Anirudhan V., Barillà C., Matthias N., Randell S.H., Rab A., Sorscher E.J., Kerschner J.L., Yin S., Harris A., Mendel M., Kim K., Zhang L., Conway A., Davis B.R. Highly efficient gene editing of cystic fibrosis patient-derived airway basal cells results in functional CFTR correction. Mol Ther. 2020;28(7): 1684-1695. doi 10.1016/j.ymthe.2020.04.021; Taylor-Cousar J.L., Munck A., McKone E.F., van der Ent C.K., Moeller A., Simard C., Wang L.T., Ingenito E.P., McKee C., Lu Y., Lekstrom-Himes J., Elborn J.S. Tezacaftor-ivacaftor in patients with cystic fibrosis homozygous for Phe508del. N Engl J Med. 2017; 377(21):2013-2023. doi 10.1056/NEJMoa1709846; Van Goor F., Straley K.S., Cao D., González J., Hadida S., Hazlewood A., Joubran J., Knapp T., Makings L.R., Miller M., Neuberger T., Olson E., Panchenko V., Rader J., Singh A., Stack J.H., Tung R., Grootenhuis P.D., Negulescu P. Rescue of ΔF508-CFTR trafficking and gating in human cystic fibrosis airway primary cultures by small molecules. Am J Physiol Lung Cell Mol Physiol. 2006;290(6):L1117-L1130. doi 10.1152/ajplung.00169.2005; Van Goor F., Hadida S., Grootenhuis P.D., Burton B., Cao D., Neuberger T., Turnbull A., Singh A., Joubran J., Hazlewood A., Zhou J., McCartney J., Arumugam V., Decker C., Yang J., Young C., Olson E.R., Wine J.J., Frizzell R.A., Ashlock M., Negulescu P. Rescue of CF airway epithelial cell function in vitro by a CFTR potentiator, VX-770. Proc Natl Acad Sci USA. 2009;106(44):18825-18830. doi 10.1073/pnas.0904709106; Wainwright C.E., Elborn J.S., Ramsey B.W., Marigowda G., Huang X., Cipolli M., Colombo C., Davies J.C., De Boeck K., Flume P.A., Konstan M.W., McColley S.A., McCoy K., McKone E.F., Munck A., Ratjen F., Rowe S.M., Waltz D., Boyle M.P.; TRAFFIC Study Group; TRANSPORT Study Group. Lumacaftor-ivacaftor in patients with cystic fibrosis homozygous for Phe508del CFTR. N Engl J Med. 2015;373(18):1783-1784. doi 10.1056/NEJMc1510466; Wang G. Genome editing for cystic fibrosis. Cells. 2023;12(12):1555. doi 10.3390/cells12121555; Xia E., Zhang Y., Cao H., Li J., Duan R., Hu J. TALEN-mediated gene targeting for cystic fibrosis-gene therapy. Genes (Basel). 2019; 10(1):39. doi 10.3390/genes10010039; Zainal Abidin N., Haq I.J., Gardner A.I., Brodlie M. Ataluren in cystic fibrosis: development, clinical studies and where are we now? Expert Opin Pharmacother. 2017;18(13):1363-1371. doi 10.1080/14656566.2017.1359255; https://vavilov.elpub.ru/jour/article/view/4547

  6. 6
  7. 7
  8. 8
    Academic Journal

    Συνεισφορές: The study has been funded by the state assignment of the Ministry of Science and Higher Education of the Russian Federation., Работа выполнена в рамках государственного задания Минобрнауки России для ФГБНУ МГНЦ

    Πηγή: Medical Genetics; Том 23, № 9 (2024); 3-17 ; Медицинская генетика; Том 23, № 9 (2024); 3-17 ; 2073-7998

    Περιγραφή αρχείου: application/pdf

    Relation: https://www.medgen-journal.ru/jour/article/view/2551/1814; Derichs N. Targeting a genetic defect: cystic fibrosis transmembrane conductance regulator modulators in cystic fibrosis. Eur. Respir. Rev. 2013; 22: 58-65.; Berger H.A., Anderson M.P., Gregory R.J. et al. Identification and regulation of the cystic fibrosis transmembrane conductance regulator-generated chloride channel. J. Clin. Invest. 1991; 88: 1422-31.; Choi J.Y., Muallem D., Kiselyov K. et al. Aberrant CFTR-dependent HCO3-transport in mutations associated with cystic fibrosis. Nature 2001; 410: 94-7.; Vertex Pharmaceuticals Incorporated. Trikafta (elexacaftor, tezacaftor, and ivacaftor tablets; ivacaftor tablets) [package insert]. U.S. Food and Drug Administration website. https://www.accessdata.fda.gov/drugsatfda_docs/label/2021/212273s004lbl.pdf. Revised June 2021. Accessed January 21, 2024.; Merali Z. Life-changing cystic fibrosis treatment wins US$3-million Breakthrough Prize. Nature. 2023 Sep;621(7979):450-451. doi:10.1038/d41586-023-02890-1.; Bacalhau M., Camargo M., Magalhães-Ghiotto G.A.V., et al. Elexacaftor-Tezacaftor-Ivacaftor: A Life-Changing Triple Combination of CFTR Modulator Drugs for Cystic Fibrosis. Pharmaceuticals (Basel). 2023 Mar 8;16(3):410. doi:10.3390/ph16030410.; Manciulli T., Bresci S., Mencarini J., et al. Prevalence of adverse events in cystic fibrosis patients treated with elexacaftor/tezacaftor/ivacaftor: Experience of the regional referral center in Tuscany, Italy. Pediatr Pulmonol. 2023 Dec;58(12):3626-3629. doi:10.1002/ppul.26673.; Zhang L., Albon D., Jones M., Bruschwein H. Impact of elexacaftor/ tezacaftor/ivacaftor on depression and anxiety in cystic fibrosis. Ther Adv Respir Dis. 2022 Jan-Dec;16:17534666221144211. doi:10.1177/17534666221144211.; Arslan M., Chalmers S., Rentfrow K., et al. Suicide attempts in adolescents with cystic fibrosis on Elexacaftor/Tezacaftor/Ivacaftor therapy. J Cyst Fibros. 2023 May;22(3):427-430. doi:10.1016/j.jcf.2023.01.015.; Калиновская Е. В России зарегистрирован тройной комбинированный препарат от муковисцидоза, Фармацевтический вестник, 19.06.2023, https://pharmvestnik.ru/content/news/V-Rossii-zaregistrirovan-troinoi-kombinirovannyi-preparatot-mukoviscidoza.html. Дата доступа: 23.01.2024; Aposhian H.V. The use of DNA for gene therapy--the need, experimental approach, and implications. Perspect Biol Med. 1970 Autumn;14(1):98-108. doi:10.1353/pbm.1970.0011.; Collins F.S., Riordan J.R., Tsui L.C. The cystic fibrosis gene: isolation and significance. Hosp Pract (Off Ed). 1990 Oct 15;25(10):47- 57. doi:10.1080/21548331.1990.11704019.; Aitken M.L., Moss R.B., Waltz D.A., et al. A phase I study of aerosolized administration of tgAAVCF to cystic fibrosis subjects with mild lung disease. Hum Gene Ther. 2001 Oct 10;12(15):1907-16. doi:10.1089/104303401753153956.; Flotte T.R., Schwiebert E.M., Zeitlin P.L., Carter B.J., Guggino W.B. Correlation between DNA transfer and cystic fibrosis airway epithelial cell correction after recombinant adeno-associated virus serotype 2 gene therapy. Hum Gene Ther. 2005 Aug;16(8):921-8. doi:10.1089/hum.2005.16.921.; Flotte T.R., Zeitlin P.L., Reynolds T.C., et al. Phase I trial of intranasal and endobronchial administration of a recombinant adeno-associated virus serotype 2 (rAAV2)-CFTR vector in adult cystic fibrosis patients: a two-part clinical study. Hum Gene Ther. 2003 Jul 20;14(11):1079-88. doi:10.1089/104303403322124792.; Alton E.W.F.W., Armstrong D.K., Ashby D., Bayfield K.J., Bilton D., Bloomfield E.V., et al. A randomised, double-blind, placebo-controlled trial of repeated nebulisation of non-viral cystic fibrosis transmembrane conductance regulator (CFTR) gene therapy in patients with cystic fibrosis. Efficacy Mech Eval 2016;3(5) doi:10.3310/eme03050; Cox D.B., Platt R.J., Zhang F. Therapeutic genome editing: prospects and challenges. Nat Med. 2015 Feb;21(2):121-31. doi:10.1038/nm.3793.; Komor A.C., Kim Y.B., Packer M.S., Zuris J.A., Liu D.R. Programmable editing of a target base in genomic DNA without double-stranded DNA cleavage. Nature. 2016 May 19;533(7603):420-4. doi:10.1038/nature17946.; Anzalone A.V., Randolph P.B., Davis J.R., et al. Search-and-replace genome editing without double-strand breaks or donor DNA. Nature. 2019 Dec;576(7785):149-157. doi:10.1038/s41586-019-1711-4.; Farmen S.L., Karp P.H., Ng P., et al. Gene transfer of CFTR to airway epithelia: low levels of expression are sufficient to correct Cltransport and overexpression can generate basolateral CFTR. Am J Physiol Lung Cell Mol Physiol. 2005 Dec;289(6):L1123-30. doi:10.1152/ajplung.00049.2005.; Johnson L.G., Olsen J.C., Sarkadi B., et al. Efficiency of gene transfer for restoration of normal airway epithelial function in cystic fibrosis. Nat Genet. 1992 Sep;2(1):21-5. doi:10.1038/ng0992-21.; Limberis M., Anson D.S., Fuller M., Parsons D.W. Recovery of airway cystic fibrosis transmembrane conductance regulator function in mice with cystic fibrosis after single-dose lentivirus-mediated gene transfer. Hum Gene Ther. 2002 Nov 1;13(16):1961-70. doi:10.1089/10430340260355365. Erratum in: Hum Gene Ther. 2002 Nov 20;13(17)2112.; Stocker A.G., Kremer K.L., Koldej R., et al. Single-dose lentiviral gene transfer for lifetime airway gene expression. J Gene Med. 2009 Oct;11(10):861-7. doi:10.1002/jgm.1368.; Farrow N., Cmielewski .P, Delhove J., et al. Towards Human Translation of Lentiviral Airway Gene Delivery for Cystic Fibrosis: A OneMonth CFTR and Reporter Gene Study in Marmosets. Hum Gene Ther. 2021 Aug;32(15-16):806-816. doi:10.1089/hum.2020.267.; Reyne N., Cmielewski P., McCarron A., et al. Single-Dose Lentiviral Mediated Gene Therapy Recovers CFTR Function in Cystic Fibrosis Knockout Rats. Front Pharmacol. 2021 May 18;12:682299. doi:10.3389/fphar.2021.682299.; Cooney A.L., Abou Alaiwa M.H., Shah V.S., et al. Lentiviral-mediated phenotypic correction of cystic fibrosis pigs. JCI Insight. 2016 Sep 8;1(14):e88730. doi:10.1172/jci.insight.88730.; Cooney A.L., Singh B.K., Loza L.M., et al. Widespread airway distribution and short-term phenotypic correction of cystic fibrosis pigs following aerosol delivery of piggyBac/adenovirus. Nucleic Acids Res. 2018 Oct 12;46(18):9591-9600. doi:10.1093/nar/gky773.; Trimidal S. G., Benjamin R., Bae J. E., et al. Can Designer Indels Be Tailored by Gene Editing?. BioEssays 2019, 41, 1900126. https://doi.org/10.1002/bies.201900126; Kim Y.G., Cha J., Chandrasegaran S. Hybrid restriction enzymes: zinc finger fusions to Fok I cleavage domain. Proc Natl Acad Sci U S A. 1996 Feb 6;93(3):1156-1160.; Cermak T., Doyle E.L., Christian M., et al. Efficient design and assembly of custom TALEN and other TAL effector-based constructs for DNA targeting. Nucleic Acids Res. 2011 Jul;39(12):e82.; Jinek M., Chylinski K., Fonfara I., et al. A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. Science. 2012 Aug 17;337(6096):816-821.; Mullard A. CRISPR pioneers win Nobel prize. Nat Rev Drug Discov. 2020 Dec;19(12):827. doi:10.1038/d41573-020-00198-7.; ClinicalTrials.gov. National Library of Medicine, 8600 Rockville Pike, Bethesda, MD 20894, https://clinicaltrials.gov (дата доступа 18.01.2024 г.); Gaudelli N.M., Komor A.C., Rees H.A., et al. Programmable base editing of A•T to G•C in genomic DNA without DNA cleavage. Nature. 2017 Nov 23;551(7681):464-471. doi:10.1038/nature24644. Erratum in: Nature. 2018 May 2.; Rees H.A., Liu D.R. Base editing: precision chemistry on the genome and transcriptome of living cells [published correction appears in Nat Rev Genet. 2018 Oct 19;:]. Nat Rev Genet. 2018;19(12):770- 788. doi:10.1038/s41576-018-0059-1; Geurts M.H., de Poel E., Amatngalim G.D., et al. CRISPR-Based Adenine Editors Correct Nonsense Mutations in a Cystic Fibrosis Organoid Biobank. Cell Stem Cell. 2020 Apr 2;26(4):503-510.e7. doi:10.1016/j.stem.2020.01.019. Epub 2020 Feb 20. PMID: 32084388.; Philippidis A. CASGEVY Makes History as FDA Approves First CRISPR/Cas9 Genome Edited Therapy. Hum Gene Ther. 2024 Jan;35(1-2):1-4. doi:10.1089/hum.2023.29263.bfs.; Gillmore J.D., Gane E., Taubel J., et al. CRISPR-Cas9 In Vivo Gene Editing for Transthyretin Amyloidosis. N Engl J Med. 2021 Aug 5;385(6):493-502. doi:10.1056/NEJMoa2107454.; Suzuki S., Chosa K., Barillà C., et al. Seamless Gene Correction in the Human Cystic Fibrosis Transmembrane Conductance Regulator Locus by Vector Replacement and Vector Insertion Events. Front Genome Ed. 2022 Apr 6;4:843885. doi:10.3389/fgeed.2022.843885.; Cuevas-Ocaña S., Yang J.Y., Aushev M., et al. A Cell-Based Optimised Approach for Rapid and Efficient Gene Editing of Human Pluripotent Stem Cells. Int J Mol Sci. 2023 Jun 17;24(12):10266. doi:10.3390/ijms241210266.; Krishnamurthy S., Traore S., Cooney A.L., et al. Functional correction of CFTR mutations in human airway epithelial cells using adenine base editors. Nucleic Acids Res. 2021 Oct 11;49(18):10558- 10572. doi:10.1093/nar/gkab788.; Bednarski C., Tomczak K., Vom Hövel B., et al. Targeted Integration of a Super-Exon into the CFTR Locus Leads to Functional Correction of a Cystic Fibrosis Cell Line Model. PLoS One 2016; 11(8): e0161072.; Vaidyanathan S., Salahudeen A.A., Sellers Z.M., et al. High-Efficiency, Selection-free Gene Repair in Airway Stem Cells from Cystic Fibrosis Patients Rescues CFTR Function in Differentiated Epithelia. Cell Stem Cell. 2020 Feb 6;26(2):161-171.e4. doi:10.1016/j.stem.2019.11.002.; Wei T., Sun Y., Cheng Q., et al. Lung SORT LNPs enable precise homology-directed repair mediated CRISPR/Cas genome correction in cystic fibrosis models. Nat Commun. 2023 Nov 11;14(1):7322. doi:10.1038/s41467-023-42948-2.; Mention K., Cavusoglu-Doran K., Joynt A.T., et al. Use of adenine base editing and homology-independent targeted integration strategies to correct the cystic fibrosis causing variant, W1282X. Hum Mol Genet. 2023 Nov 17;32(23):3237-3248. doi:10.1093/hmg/ddad143.; Dekkers J.F,. Wiegerinck C.L., de Jonge H.R., et al. A functional CFTR assay using primary cystic fibrosis intestinal organoids. Nat Med. 2013 Jul;19(7):939-45. doi:10.1038/nm.3201.; Sato T., Clevers H. Growing self-organizing mini-guts from a single intestinal stem cell: mechanism and applications. Science. 2013 Jun 7;340(6137):1190-4. doi:10.1126/science.1234852.; Miller A.J., Hill D.R., Nagy M.S., et al. In Vitro Induction and In Vivo Engraftment of Lung Bud Tip Progenitor Cells Derived from Human Pluripotent Stem Cells. Stem Cell Reports. 2018 Jan 9;10(1):101-119. doi:10.1016/j.stemcr.2017.11.012.; Demchenko A., Kondrateva E., Tabakov V., et al. Airway and Lung Organoids from Human-Induced Pluripotent Stem Cells Can Be Used to Assess CFTR Conductance. Int. J. Mol. Sci. 2023, 24, 6293. https://doi.org/10.3390/ijms24076293.; Miller A.J., Dye B.R., Ferrer-Torres D., et al. Generation of lung organoids from human pluripotent stem cells in vitro. Nat Protoc. 2019 Feb;14(2):518-540. doi:10.1038/s41596-018-0104-8.; Parekh K.R., Nawroth J., Pai A., et al. Stem cells and lung regeneration. Am J Physiol Cell Physiol. 2020 Oct 1;319(4):C675-C693. doi:10.1152/ajpcell.00036.2020.; Della Latta V., Cecchettini A., Del Ry S., Morales M.A. Bleomycin in the setting of lung fibrosis induction: From biological mechanisms to counteractions. Pharmacol Res. 2015 Jul;97:122-30. doi:10.1016/j.phrs.2015.04.012.; Rosen C., Shezen E., Aronovich A., et al. Preconditioning allows engraftment of mouse and human embryonic lung cells, enabling lung repair in mice. Nat Med. 2015 Aug;21(8):869-79. doi:10.1038/nm.3889.; Loi R., Beckett T., Goncz K.K., Suratt B.T., Weiss D.J. Limited restoration of cystic fibrosis lung epithelium in vivo with adult bone marrow-derived cells. Am J Respir Crit Care Med. 2006 Jan 15;173(2):171-9. doi:10.1164/rccm.200502-309OC.; Gutierrez-Aranda I., Ramos-Mejia V., Bueno C., et al. Human induced pluripotent stem cells develop teratoma more efficiently and faster than human embryonic stem cells regardless the site of injection. Stem Cells. 2010 Sep;28(9):1568-70. doi:10.1002/stem.471.; Liu Z., Tang Y., Lü S., et al. The tumourigenicity of iPS cells and their differentiated derivates. J Cell Mol Med. 2013 Jun;17(6):782-91. doi:10.1111/jcmm.12062.; Lee C.M., Flynn R., Hollywood J.A., et al. Correction of the ΔF508 Mutation in the Cystic Fibrosis Transmembrane Conductance Regulator Gene by Zinc-Finger Nuclease Homology-Directed Repair. Biores. Open Access. 2012; 1(3): 99-108.; Schwank G., Koo B.K., Sasselli V., et al. Functional repair of CFTR by CRISPR/Cas9 in intestinal stem cell organoids of cystic fibrosis patients. Cell Stem Cell 2013; 13(6): 653-8.; Firth A.L., Menon T., Parker G.S., et al. Functional Gene Correction for Cystic Fibrosis in Lung Epithelial Cells Generated from Patient iPSCs. Cell Rep. 2015; 12(9): 1385-90.; Crane A.M., Kramer P., Bui J.H., et al. Targeted correction and restored function of the CFTR gene in cystic fibrosis induced pluripotent stem cells. Stem Cell Reports 2015; 4(4): 569-77.; Hollywood J.A., Lee C.M., Scallan M.F., et al. Analysis of gene repair tracts from Cas9/gRNA double-stranded breaks in the human CFTR gene. Sci. Rep. 2016; 6: 32230.; Suzuki S., Sargent R.G., Illek B., et al. TALENs Facilitate Single-step Seamless SDF Correction of F508del CFTR in Airway Epithelial Submucosal Gland Cell-derived CF-iPSCs. Mol. Ther. Nucleic Acids. 2016; 5: e273.; Merkert S., Bednarski C., Göhring G., et al. Generation of a gene-corrected isogenic control iPSC line from cystic fibrosis patient-specific iPSCs homozygous for p.Phe508del mutation mediated by TALENs and ssODN. Stem Cell Res. 2017; 23: 95-7.; Peters-Hall J.R., Coquelin M.L., Torres M.J., et al. Long-term culture and cloning of primary human bronchial basal cells that maintain multipotent differentiation capacity and CFTR channel function. Am J Physiol Lung Cell Mol Physiol. 2018 Aug 1;315(2):L313-L327. doi:10.1152/ajplung.00355.2017.; Suzuki S., Crane A.M., Anirudhan V., et al. Highly Efficient Gene Editing of Cystic Fibrosis Patient-Derived Airway Basal Cells Results in Functional CFTR Correction. Mol Ther. 2020 Jul 8;28(7):1684-1695. doi:10.1016/j.ymthe.2020.04.021.; Fleischer A., Vallejo-Díez S., Martín-Fernández J.M., et al. iPSC-Derived Intestinal Organoids from Cystic Fibrosis Patients Acquire CFTR Activity upon TALEN-Mediated Repair of the p.F508del Mutation. Mol Ther Methods Clin Dev. 2020 Apr 18;17:858-870. doi:10.1016/j.omtm.2020.04.005.; Palmer D.J., Turner D.L., Ng P. A Single “All-in-One” Helper-Dependent Adenovirus to Deliver Donor DNA and CRISPR/Cas9 for Efficient Homology-Directed Repair. Mol Ther Methods Clin Dev. 2020 Feb 4;17:441-447. doi:10.1016/j.omtm.2020.01.014.; Geurts M.H., de Poel E., Pleguezuelos-Manzano C., et al. Evaluating CRISPR-based prime editing for cancer modeling and CFTR repair in organoids. Life Sci Alliance. 2021 Aug 9;4(10):e202000940. doi:10.26508/lsa.202000940.; Ruan J., Hirai H., Yang D., et al. Efficient Gene Editing at Major CFTR Mutation Loci. Mol Ther Nucleic Acids. 2019 Jun 7;16:73- 81. doi:10.1016/j.omtn.2019.02.006.; Bulcaen M., Kortleven P., Liu R.B., et al. Prime editing functionally corrects cystic fibrosis-causing CFTR mutations in human organoids and airway epithelial cells. Cell Rep Med. 2024 May 21;5(5):101544. doi:10.1016/j.xcrm.2024.101544.; Sanz D.J., Hollywood J.A., Scallan M.F., et al. Cas9/gRNA targeted excision of cystic fibrosis-causing deep-intronic splicing mutations restores normal splicing of CFTR mRNA. PLoS One 2017; 12(9): e0184009.; Maule G., Casini A., Montagna C., et al. Allele specific repair of splicing mutations in cystic fibrosis through AsCas12a genome editing. Nat Commun. 2019 Aug 7;10(1):3556. doi:10.1038/s41467-019-11454-9.; Sanz D.J., Harrison P.T. Minigene assay to Evaluate CRISPR/Cas9- based excision of Intronic mutations that Cause Aberrant Splicing in Human Cells. Bio Protoc. 2019 Jun 5;9(11):e3251. doi:10.21769/BioProtoc.3251.; Melfi R., Cancemi P., Chiavetta R., et al. Investigating REPAIRv2 as a Tool to Edit CFTR mRNA with Premature Stop Codons. Int J Mol Sci. 2020 Jul 6;21(13):4781. doi:10.3390/ijms21134781.; Erwood S., Laselva O., Bily T.M.I., et al. Allele-Specific Prevention of Nonsense-Mediated Decay in Cystic Fibrosis Using Homology-Independent Genome Editing. Mol Ther Methods Clin Dev. 2020 May 12;17:1118-1128. doi:10.1016/j.omtm.2020.05.002.; Santos L., Mention K., Cavusoglu-Doran K., et al. Comparison of Cas9 and Cas12a CRISPR editing methods to correct the W1282X-CFTR mutation. J Cyst Fibros. 2021 Jun 5:S1569- 1993(21)00167-3. doi:10.1016/j.jcf.2021.05.014.; Chiavetta R.F., Titoli S., Barra V., et al. Site-Specific RNA Editing of Stop Mutations in the CFTR mRNA of Human Bronchial Cultured Cells. Int J Mol Sci. 2023 Jun 30;24(13):10940. doi:10.3390/ijms241310940.; Li C., Liu Z., Anderson J., et al. Prime editing-mediated correction of the CFTR W1282X mutation in iPSCs and derived airway epithelial cells. PLoS One. 2023 Nov 29;18(11):e0295009. doi:10.1371/journal.pone.0295009.; Amistadi S., Maule G., Ciciani M., et al. Functional restoration of a CFTR splicing mutation through RNA delivery of CRISPR adenine base editor. Mol Ther. 2023 Jun 7;31(6):1647-1660. doi:10.1016/j.ymthe.2023.03.004.; Walker A.J., Graham C., Greenwood M., et al. Molecular and functional correction of a deep intronic splicing mutation in CFTR by CRISPR-Cas9 gene editing. Mol Ther Methods Clin Dev. 2023 Oct 18;31:101140. doi:10.1016/j.omtm.2023.101140.; Joynt A.T., Kavanagh E.W., Newby G.A., et al. Protospacer modification improves base editing of a canonical splice site variant and recovery of CFTR function in human airway epithelial cells. Mol Ther Nucleic Acids. 2023 Jun 29;33:335-350. doi:10.1016/j.omtn.2023.06.020.; Кондратьева Е.В., Демченко А.Г., Лавров А.В., Смирнихина С.А. Редактирование мутации c.3846G>A (p.Trp1282*) в гене CFTR в ИПСК с использованием аденинового редактора. Медицинская генетика. 2023; 22(11): 20-26. Doi:10.25557/2073-7998.2023.11.20-26; Kulhankova K., Traore S., Cheng X., et al. Shuttle peptide delivers base editor RNPs to rhesus monkey airway epithelial cells in vivo. Nat Commun. 2023 Dec 5;14(1):8051. doi:10.1038/s41467-023-43904-w.; Cystic Fibrosis Foundation Patient Registry 2021 Annual Data Report, Bethesda, Maryland, Cystic Fibrosis Foundation. https://www.cff.org/medical-professionals/patient-registry. Дата доступа: 22.01.2024; UK Cystic Fibrosis Registry 2022 Annual Data Report, 2023, https://www.cysticfibrosis.org.uk/sites/default/files/2023-12/CFT_2022_Annual_Data_Report_Dec2023.pdf. Дата доступа: 22.01.2024; Petrova N., Balinova N., Marakhonov A., Vasilyeva T., Kashirskaya N., Galkina V., Ginter E., Kutsev S., Zinchenko R. Ethnic Differences in the Frequency of CFTR Gene Mutations in Populations of the European and North Caucasian Part of the Russian Federation. Front Genet. 2021 Jun 16;12:678374. doi:10.3389/fgene.2021.678374; Регистр пациентов с муковисцидозом в Российской Федерации. 2021 год./ Под редакцией С.А. Красовского, М.А. Стариновой, А.Ю. Воронковой, Е.Л. Амелиной, Н.Ю. Каширской, Е.И. Кондратьевой, Л.П. Назаренко – СПб.: Благотворительный фонд «Острова», 2023, 81 с.; Maeder M.L., Thibodeau-Beganny S., Osiak A., et al. Rapid “opensource” engineering of customized zinc-finger nucleases for highly efficient gene modification. Mol Cell. 2008 Jul 25;31(2):294-301. doi:10.1016/j.molcel.2008.06.016.; Ramalingam S., London V., Kandavelou K., et al. Generation and genetic engineering of human induced pluripotent stem cells using designed zinc finger nucleases. Stem Cells Dev. 2013; 22(4): 595-610.; Xia E., Zhang Y., Cao H., et al. TALEN-Mediated Gene Targeting for Cystic Fibrosis-Gene Therapy. Genes (Basel). 2019 Jan 11;10(1):39. doi:10.3390/genes10010039.; Vaidyanathan S., Kerschner J.L., Paranjapye A., et al. Investigating adverse genomic and regulatory changes caused by replacement of the full-length CFTR cDNA using Cas9 and AAV. Mol Ther Nucleic Acids. 2024 Feb 2;35(1):102134. doi:10.1016/j.omtn.2024.102134

  9. 9
    Academic Journal

    Συνεισφορές: The work has been funded by the state assignment of the Ministry of Science and Higher Education of the Russian Federation., Работа выполнена в рамках государственного задания Минобрнауки России для ФГБНУ «МГНЦ».

    Πηγή: Medical Genetics; Том 22, № 11 (2023); 20-26 ; Медицинская генетика; Том 22, № 11 (2023); 20-26 ; 2073-7998

    Περιγραφή αρχείου: application/pdf

    Relation: https://www.medgen-journal.ru/jour/article/view/2370/1749; Shteinberg M., Haq I.J., Polineni D., Davies J.C. Cystic fibrosis. Lancet. 2021 Jun 5;397(10290):2195-2211. doi:10.1016/S01406736(20)32542-3; Lopes-Pacheco M. CFTR Modulators: The Changing Face of Cystic Fibrosis in the Era of Precision Medicine. Front Pharmacol. 2020 Feb 21;10:1662. doi:10.3389/fphar.2019.01662; Zainal Abidin N., Haq I.J., Gardner A.I., Brodlie M. Ataluren in cystic fibrosis: development, clinical studies and where are we now? Expert Opin Pharmacother. 2017 Sep;18(13):1363-1371. doi:10.1080/14656566.2017.1359255; Doudna J.A. The promise and challenge of therapeutic genome editing. Nature. 2020 Feb;578(7794):229-236. doi:10.1038/s41586020-1978-5; Anzalone A.V., Koblan L.W., Liu D.R. Genome editing with CRISPRCas nucleases, base editors, transposases and prime editors. Nat Biotechnol. 2020 Jul;38(7):824-844. doi:10.1038/s41587-020-0561-9; Komor A.C., Kim Y.B., Packer M.S., Zuris J.A., Liu .DR. Programmable editing of a target base in genomic DNA without double-stranded DNA cleavage. Nature. 2016 May 19;533(7603):4204. doi:10.1038/nature17946; Gaudelli N.M., Komor A.C., Rees H.A., Packer M.S., Badran A.H., Bryson D.I., Liu D.R. Programmable base editing of A•T to G•C in genomic DNA without DNA cleavage. Nature. 2017 Nov 23;551(7681):464-471. doi:10.1038/nature24644; Lavrov A.V., Varenikov G.G., Skoblov M.Y. Genome scale analysis of pathogenic variants targetable for single base editing. BMC Med Genomics. 2020 Sep 18;13(Suppl 8):80. doi:10.1186/s12920-020-00735-8; Petrova N., Balinova N., Marakhonov A., Vasilyeva T., Kashirskaya N., Galkina V., Ginter E., Kutsev S., Zinchenko R. Ethnic Differences in the Frequency of CFTR Gene Mutations in Populations of the European and North Caucasian Part of the Russian Federation. Front Genet. 2021 Jun 16;12:678374. doi:10.3389/fgene.2021.678374; Регистр пациентов с муковисцидозом в Российской Федерации. 2020 год. Под редакцией Е.И. Кондратьевой, С.А. Красовского, М.А. Стариновой, А.Ю. Воронковой, Е.Л. Амелиной, Н.Ю. Каширской, С.Н. Авдеева, С.И. Куцева. Москва: МЕДПРАКТИКА-М, 2022. 68 с.; Kondrateva E., Demchenko A., Slesarenko Y,. Pozhitnova V., Yasinovsky M., Amelina E., Tabakov V., Voronina E., Lavrov A., Smirnikhina S. Generation of two induced pluripotent stem cell lines (RCMGi004-A and -B) from human skin fibroblasts of a cystic fibrosis patient with compound heterozygous F508del/W1282X mutations. Stem Cell Research 2021; 52: 102232. DOI:10.1016/j.scr.2021.102232; Hwang G.H., Park J., Lim K., Kim S., Yu J., Yu E., Kim S.T., Eils R., Kim J.S., Bae S. Web-based design and analysis tools for CRISPR base editing. BMC Bioinformatics. 2018 Dec 27;19(1):542. doi:10.1186/s12859-018-2585-4; Clement K., Rees H., Canver M.C., Gehrke J.M., Farouni R., Hsu J.Y., Cole M.A., Liu D.R., Joung J.K., Bauer D.E., Pinello L. CRISPResso2 provides accurate and rapid genome editing sequence analysis. Nat Biotechnol. 2019 Mar; 37(3):224-226. doi:10.1038/s41587-019-0032-3; Hu J.H., Miller S.M., Geurts M.H., Tang W., Chen L., Sun N., Zeina C.M, Gao X., Rees H.A., Lin Z., Liu D.R. Evolved Cas9 variants with broad PAM compatibility and high DNA specificity. Nature. 2018 Apr 5;556(7699):57-63. doi:10.1038/nature26155; Rees H.A., Liu D.R. Base editing: precision chemistry on the genome and transcriptome of living cells. Nat Rev Genet. 2018 Dec;19(12):770-788. doi:10.1038/s41576-018-0059-1; Wilschanski M. Class 1 CF Mutations. Front Pharmacol. 2012 Jun 20;3:117. doi:10.3389/fphar.2012.00117; Demchenko A., Kondrateva E., Tabakov V., Efremova A., Salikhova D., Bukharova T., Goldshtein D., Balyasin M., Bulatenko N., Amelina E., Lavrov A., Smirnikhina S. Airway and Lung Organoids from HumanInduced Pluripotent Stem Cells Can Be Used to Assess CFTR Conductance. Int. J. Mol. Sci. 2023, 24, 6293. https://doi.org/10.3390/ijms24076293; Maxwell K.G., Millman J.R. Applications of iPSC-derived beta cells from patients with diabetes. Cell Rep Med. 2021 Apr 20;2(4):100238. doi:10.1016/j.xcrm.2021.100238; Fleischer A., Vallejo-Díez S., Martín-Fernández J.M., SánchezGilabert A., Castresana M., Del Pozo A., Esquisabel A., Ávila S., Castrillo J.L., Gaínza E., Pedraz J.L., Viñas M., Bachiller D. iPSCDerived Intestinal Organoids from Cystic Fibrosis Patients Acquire CFTR Activity upon TALEN-Mediated Repair of the p.F508del Mutation. Mol Ther Methods Clin Dev. 2020 Apr 18;17:858-870. doi:10.1016/j.omtm.2020.04.005; Palmer D.J., Turner D.L., Ng P. A Single «All-in-One» HelperDependent Adenovirus to Deliver Donor DNA and CRISPR/ Cas9 for Efficient Homology-Directed Repair. Mol Ther Methods Clin Dev. 2020 Feb 4;17:441-447. doi:10.1016/j.omtm.2020.01.014; Suzuki S., Chosa K., Barillà C., Yao M., Zuffardi O., Kai H., Shuto T., Suico M.A., Kan Y.W., Sargent R.G., Gruenert D.C. Seamless Gene Correction in the Human Cystic Fibrosis Transmembrane Conductance Regulator Locus by Vector Replacement and Vector Insertion Events. Front Genome Ed. 2022 Apr 6;4:843885. doi:10.3389/fgeed.2022.843885; Johnson L.G., Olsen J.C., Sarkadi B., Moore K.L., Swanstrom R., Boucher R.C. Efficiency of gene transfer for restoration of normal airway epithelial function in cystic fibrosis. Nat Genet. 1992 Sep;2(1):21-5. doi:10.1038/ng0992-21; Geurts M.H., de Poel E., Amatngalim G.D., et al. CRISPR-Based Adenine Editors Correct Nonsense Mutations in a Cystic Fibrosis Organoid Biobank [published online ahead of print, 2020 Feb 13]. Cell Stem Cell. 2020;S1934-5909(20)30019-9. doi:10.1016/j.stem.2020.01.019; Krishnamurthy S., Traore S., Cooney A.L., Brommel C.M., Kulhankova K., Sinn P.L., Newby GA, Liu DR, McCray PB. Functional correction of CFTR mutations in human airway epithelial cells using adenine base editors. Nucleic Acids Res. 2021 Oct 11;49(18):10558-10572. doi:10.1093/nar/gkab788; Chiavetta R.F., Titoli S., Barra V., Cancemi P., Melfi R., Di Leonardo A. Site-Specific RNA Editing of Stop Mutations in the CFTR mRNA of Human Bronchial Cultured Cells. Int J Mol Sci. 2023 Jun 30;24(13):10940. doi:10.3390/ijms241310940; Melfi R., Cancemi P., Chiavetta R., Barra V., Lentini L., Di Leonardo A. Investigating REPAIRv2 as a Tool to Edit CFTR mRNA with Premature Stop Codons. Int J Mol Sci. 2020 Jul 6;21(13):4781. doi:10.3390/ijms21134781; Cuevas-Ocaña S., Yang J.Y., Aushev M., Schlossmacher G., Bear C.E., Hannan N.R.F., Perkins N.D., Rossant J., Wong A.P., Gray M.A. A Cell-Based Optimised Approach for Rapid and Efficient Gene Editing of Human Pluripotent Stem Cells. Int J Mol Sci. 2023 Jun 17;24(12):10266. doi:10.3390/ijms241210266; Erwood S., Laselva O., Bily T.M.I., Brewer R.A., Rutherford A.H., Bear C.E., Ivakine E.A. Allele-Specific Prevention of Nonsense-Mediated Decay in Cystic Fibrosis Using Homology-Independent Genome Editing. Mol Ther Methods Clin Dev. 2020 May 12;17:11181128. doi:10.1016/j.omtm.2020.05.002; Santos L., Mention K., Cavusoglu-Doran K., Sanz D.J., Bacalhau M., Lopes-Pacheco M., Harrison P.T., Farinha C.M. Comparison of Cas9 and Cas12a CRISPR editing methods to correct the W1282X-CFTR mutation. J Cyst Fibros. 2021 Jun 5:S15691993(21)00167-3. doi:10.1016/j.jcf.2021.05.014

  10. 10
    Academic Journal

    Πηγή: Medical Genetics; Том 21, № 12 (2022); 10-15 ; Медицинская генетика; Том 21, № 12 (2022); 10-15 ; 2073-7998

    Περιγραφή αρχείου: application/pdf

    Relation: https://www.medgen-journal.ru/jour/article/view/2206/1671; Kondo H., Maksimova N., Otomo T. et al. Mutation in VPS33A affects metabolism of glycosaminoglycans: a new type of mucopolysaccharidosis with severe systemic symptoms. Hum Mol Genet. 2017;26:173-183; Vasilev F., Sukhomyasova A., Otomo T. Mucopolysaccharidosis-Plus Syndrome.Int J Mol Sci. 2020;21(2):421; Gissen P., Johnson C.A., Gentle D. et al.Comparative evolutionary analysis of VPS33 homologues: Genetic and functional insights. Hum Mol Genet. 2005;14:1261-1270; Baker R.W., Jeffrey P.D., Hughson F.M. Crystal Structures of the Sec1/Munc18 (SM) Protein Vps33, Alone and Bound to the Homotypic Fusion and Vacuolar Protein Sorting (HOPS) Subunit Vps16. PLoS ONE. 2013;8:e67409; Ran F.A., Hsu P.D., Wright J. et al. Genome engineering using the CRISPR-Cas9 system. Nat Protoc. 2013;8(11):2281-2308; Klionsky D.J., Abdelmohsen K., Abe A. et al. Guidelines for the use and interpretation of assays for monitoring autophagy (3rd edition). Autophagy. 2016;12:1-222; Pavlova E., Shatunov A., Wartosch L. et al. The lysosomal disease caused by mutant VPS33A. Hum Mol Genet. 2019;28(15):2514-2530; Jiang P., Nishimura T., Sakamaki Y. et al. The HOPS complex mediates autophagosome-lysosome fusion through interaction with syntaxin 17. Mol Biol Cell. 2014;25:1327-1337

  11. 11
  12. 12
    Academic Journal

    Πηγή: Биотехнология в растениеводстве, животноводстве и сельскохозяйственной микробиологии. :22-23

  13. 13
    Academic Journal

    Συγγραφείς: A. B. Shcherban, А. Б. Щербань

    Συνεισφορές: This work was supported by the budget project FWNR-2022-0041.

    Πηγή: Vavilov Journal of Genetics and Breeding; Том 26, № 7 (2022); 684-696 ; Вавиловский журнал генетики и селекции; Том 26, № 7 (2022); 684-696 ; 2500-3259 ; 10.18699/VJGB-22-72

    Περιγραφή αρχείου: application/pdf

    Relation: https://vavilov.elpub.ru/jour/article/view/3538/1659; Ahloowalia B.S., Maluszynski M., Nichterlein K. Global impact of mutation-derived varieties. Euphytica. 2004;135(2):187-204. DOI:10.1023/B:EUPH.0000014914.85465.4f.; Andersson M., Turesson H., Nicolia A., Fält A.S., Samuelsson M., Hofvander P.E. Efficient targeted multiallelic mutagenesis in tetraploid potato (Solanum tuberosum) by transient CRISPR-Cas9 expression in protoplasts. Plant Cell Rep. 2017;36(1):117-128. DOI:10.1007/s00299-016-2062-3.; Andersson M., Turesson H., Olsson N., Fält A.-S., Ohlsson P., Gonzalez M.N., Samuelsson M., Hofvander P. Genome editing in potato via CRISPR-Cas9 ribonucleoprotein delivery. Physiol. Plant. 2018; 164(4):378-384. DOI:10.1111/ppl.12731.; Bak R.O., Gomez-Ospina N., Porteus M.H. Gene editing on center stage. Trends Genet. 2018;34(8):600-611. DOI:10.1016/j.tig.2018.05.004.; Baltes N.J., Gil-Humanes J., Cermak T., Atkins P.A., Voytas D.F. DNA replicons for plant genome engineering. Plant Cell. 2014;26(1): 151-163. DOI:10.1105/tpc.113.119792.; Banerjee S.K., Borden A., Christensen R.B., LeClerc J.E., Lawrence C.W. SOS-dependent replication past a single trans-syn T-T cyclobutane dimer gives a different mutation spectrum and increased error rate compared with replication past this lesion in uniduced cell. J. Bacteriol. 1990;172(4):2105-2112. DOI:10.1128/jb.172.4.2105-2112.1990.; Beetham P.R., Kipp P.B., Sawycky X.L., Arntzen C.J., May G.D. A tool for functional plant genomics: chimeric RNA/DNA oligonucleotides cause in vivo gene-specific mutations. Proc. Natl. Acad. Sci. USA. 1999;96(15):8774-8778. DOI:10.1073/pnas.96.15.8774.; Burkhardt P.K., Beyer P., Wünn J., Klöti A., Armstrong G.A., Schledz M., von Lintig J., Potrykus I. Transgenic rice (Oryza sativa) endosperm expressing daffodil (Narcissus pseudonarcissus) phytoene synthase accumulates phytoene, a key intermediate of provitamin A biosynthesis. Plant J. 1997;11(5):1071-1078. DOI:10.1046/j.1365-313x.1997.11051071.x.; Butler N.M., Baltes N.J., Voytas D.F., Douches D.S. Geminivirusmediated genome editing in potato (Solanum tuberosum L.) using sequence-specific nucleases. Front. Plant Sci. 2016;7:1045. DOI:10.3389/fpls.2016.01045.; Capecchi M.R. Altering the genome by homologous recombination. Science. 1989;244(4910):1288-1292. DOI:10.1126/science.2660260.; Čermák T., Baltes N.J., Čegan R., Zhang Y., Voytas D.F. High-frequency, precise modification of the tomato genome. Genome Biol. 2015; 16:232. DOI:10.1186/s13059-015-0796-9.; Chandrasekaran J., Brumin M., Wolf D., Leibman D., Klap C., Pearlsman M., Sherman A., Arazi T., Gal-On A. Development of broad virus resistance in non-transgenic cucumber using CRISPR/Cas9 technology. Mol. Plant Pathol. 2016;17(7):1140-1153. DOI:10.1111/mpp.12375.; Cherny I.V. Novosibirskaya-67 common wheat radiation variety: creation and introduction into agricultural production in West Siberia. Novosibirsk: Institute of Cytology and Genetics, 1982. (in Russian); Clasen B.M., Stoddard T.J., Luo S., Demorest Z.L., Li J., Cedrone F., Tibebu R., Davison S., Ray E.E., Daulhac A., Coffman A., Yabandith A., Retterath A., Haun W., Baltes N.J., Mathis L., Voytas D.F., Zhang F. Improving cold storage and processing traits in potato through targeted gene knockout. Plant Biotechnol. J. 2016;14(1): 169-176. DOI:10.1111/pbi.12370.; Curtin S.J., Xiong Y., Michno J.M., Campbell B.W., Stec A.O., Čermák T., Starker C., Voytas D.F., Eamens A.L., Stupar R.M. CRISPR/ Cas9 and TALENs generate heritable mutations for genes involved in small RNA processing of Glycine max and Medicago truncatula. Plant Biotechnol. J. 2018;16(6):1125-1137. DOI:10.1111/pbi.12857.; Curtin S.J., Zhang F., Sander J.D., Haun W.J., Starker C., Baltes N.J., Reyon D., Dahlborg E.J., Goodwin M.J., Coffman A.P., Dobbs D., Joung J.K., Voytas D.F., Stupar R.M. Targeted mutagenesis of duplicated genes in soybean with zinc-finger nucleases. Plant Physiol. 2011;156(2):466-473. DOI:10.1104/pp.111.172981.; D’Halluin K., Vanderstraeten C., Hulle J., Rosolowska J., Den Brande I., Pennewaert A., D’Hont K., Bossut M., Jantz D., Ruiter R., Broadhvest J. Targeted molecular trait stacking in cotton through targeted double-strand break induction. Plant Biotechnol. J. 2013;11(8):933-941. DOI:10.1111/pbi.12085.; D’Halluin K., Vanderstraeten C., Stals E., Cornelissen M., Ruiter R. Homologous recombination: a basis for targeted genome optimization in crop species such as maize. Plant Biotechnol. J. 2008;6(1): 93-102. DOI:10.1111/j.1467-7652.2007.00305.x.; Dong C., Beetham P., Vincent K., Sharp P. Oligonucleotide-directed gene repair in wheat using a transient plasmid gene repair assay system. Plant Cell Rep. 2006;25(5):457-465. DOI:10.1007/s00299-005-0098-x.; Dudin M.N. Transgenic organisms (GMOs) in agriculture: an objective neeed to ensure global food security or a way to increase the profits of TNCs in agro-industrial complex? Prodovolstvennaya Politika i Bezopasnost = Food Policy and Security. 2020;7(2):107-120. DOI:10.18334/ppib.7.2.100666. (in Russian); Fonfara I., Le Rhun A., Chylinski K., Makarova K.S., Lécrivain A.L., Bzdrenga J., Koonin E.V., Charpentier E. Phylogeny of Cas9 determines functional exchangeability of dual-RNA and Cas9 among orthologous type II CRISPR-Cas systems. Nucleic Acids Res. 2014; 42(4):2577-2590. DOI:10.1093/nar/gkt1074.; Gaud W.S. The Green Revolution: Accomplishments and Apprehensions. 1968. No. REP-11061. CIMMYT. www.agbioworld.org. Genetically Engineered Crops: Experiences and Prospects. Washington (DC): National Academies Press, 2016. DOI:10.17226/23395.; Gerasimova S., Hertig C., Korotkova A.M., Kolosovskaya E.V., Otto I., Hiekel S., Kochetov A.V., Khlestkina E.K., Kumlehn J. Conversion of hulled into naked barley by Cas endonuclease-mediated knockout of the NUD gene. BMC Plant Biol. 2020;20(Suppl. 1):255. DOI:10.1186/s12870-020-02454-9.; Guirouilh-Barbat J., Huck S., Bertrand P., Pirzio L., Desmaze C., Sabatier L., Lopez B.S. Impact of the KU80 pathway on NHEJ-induced genome rearrangements in mammalian cells. Mol. Cell. 2004;14(5): 611-623. DOI:10.1016/j.molcel.2004.05.008.; Hall B., Limaye A., Kulkarni A. Overview: generation of gene knockout mice. Curr. Protoc. Cell Biol. 2009;19(1):19.12.1-19.12.17. DOI:10.1002/0471143030.cb1912s44.; Haun W., Coffman A., Clasen B.M., Demorest Z.L., Lowy A., Ray E., Retterath A., Stoddard T., Juillerat A., Cedrone F., Mathis L., Voytas D.F., Zhang F. Improved soybean oil quality by targeted mutagenesis of the fatty acid desaturase 2 gene family. Plant Biotechnol. J. 2014;12(7):934-940. DOI:10.1111/pbi.12201.; Hilioti Z., Ganopoulos I., Ajith S., Bossis I., Tsaftaris A. A novel arrangement of zinc finger nuclease system for in vivo targeted genome engineering: the tomato LEC1-LIKE4 gene case. Plant Cell Rep. 2016;35(11):2241-2255. DOI:10.1007/s00299-016-2031-x.; Huang J., Li J., Zhou J., Wang L., Yang S., Hurst L.D., Li W.-H., Tian D. Identifying a large number of high-yield genes in rice by pedigree analysis, whole-genome sequencing, and CRISPR-Cas9 gene knockout. Proc. Natl. Acad. Sci. USA. 2018;115(32):E7559-E7567. DOI:10.1073/pnas.1806110115.; Jasin M., Haber J.E. The democratization of gene editing: Insights from site-specific cleavage and double-strand break repair. DNA Repair. 2016;44:6-16. DOI:10.1016/j.dnarep.2016.05.001.; Jia H., Zhang Y., Orbović V., Xu J., White F.F., Jones J.B., Wang N. Genome editing of the disease susceptibility gene CsLOB1 in citrus confers resistance to citrus canker. Plant Biotechnol. J. 2017;15(7): 817-823. DOI:10.1111/pbi.12677.; Jonczyk P., Fijalkowska I., Ciesla Z. Overproduction of the subunit of DNA polymerase III counteracts the SOS-mutagenic response of Eischerichia coli. Proc. Natl. Acad. Sci. USA. 1988;85(23):2124-2127. DOI:10.1073/pnas.85.23.9124.; Jouanin A., Schaart J.G., Boyd L.A., Cockram J., Leigh F.J., Bates R. Outlook for coeliac disease patients: towards bread wheat with hypoimmunogenic gluten by gene editing of α- and γ-gliadin gene families. BMC Plant Biol. 2019;19:333. DOI:10.1186/s12870-019-1889-5.; Jung J.H., Altpeter F. TALEN mediated targeted mutagenesis of the caffeic acid O-methyltransferase in highly polyploid sugarcane improves cell wall composition for production of bioethanol. Plant Mol. Biol. 2016;92(1-2):131-142. DOI:10.1007/s11103-016-0499-y.; Karthik K., Nandiganti M., Thangaraj A., Singh S., Mishra P., Rathinam M., Sharma M., Singh N.K., Dash P.K., Sreevathsa R. Transgenic cotton (Gossypium hirsutum L.) to combat weed vagaries: utility of an apical meristem-targeted in planta transformation strategy to introgress a modified CP4-EPSPS gene for glyphosate tolerance. Front. Plant Sci. 2020;11:768. DOI:10.3389/fpls.2020.00768.; Khlestkina E.K., Shumny V.K. Prospects for application of breakthrough technologies in breeding: The CRISPR/Cas9 system for plant genome editing. Russ. J. Genet. 2016;52(7):676-687. DOI:10.1134/S102279541607005X.; Khush G.S. Genetically modified crops: the fastest adopted crop technology in the history of modern agriculture. Agric. Food Secur. 2012;1:14. DOI:10.1186/2048-7010-1-14.; Kilian B., Mammen K., Millet E., Sharma R., Graner A., Salamini F., Hammer K., Özkan H. Aegilops. In: Kole C. (Ed.). Wild Crop Relatives: Genomic and Breeding Resources. Berlin: Springer, 2011; 1-76. DOI:10.1007/978-3-642-14228-4_1.; Kim D., Alptekin B., Budak H. CRISPR/Cas9 genome editing in wheat. Funct. Integr. Genomics. 2017;18(1):31-41. DOI:10.1007/s10142-017-0572-x.; Kim H., Kim S.T., Ryu J., Kang B.C., Kim J.S., Kim S.G. CRISPR/ Cpf1-mediated DNA-free plant genome editing. Nat. Commun. 2017;8:14406. DOI:10.1038/ncomms14406.; Kochevenko A., Willmitzer L. Chimeric RNA/DNA oligonucleotidebased site-specific modification of the tobacco acetolactate syntase gene. Plant Physiol. 2003;132(1):174-184. DOI:10.1104/pp.102.016857.; König A., Cockburn A., Crevel R.W., Debruyne E., Grafstroem R., Hammerling U., Kimber I., Knudsen I., Kuiper H.A., Peijnenburg A.A., Penninks A.H., Poulsen M., Schauzu M., Wal J.M. Assessment of the safety of foods derived from genetically modified (GM) crops. Food Chem. Toxicol. 2004;42(7):1047-1088. DOI:10.1016/j.fct.2004.02.019.; Le H., Nguyen N.H., Ta D.T., Le T.N.T., Bui T.P., Le N.T., Bui T.P., Le N.T., Nguyen C.X., Rolletschek H., Stacey G., Stacey M.G., Pham N.B., Do P.T., Chu H.H. CRISPR/Cas9-mediated knockout of galactinol synthase-encoding genes reduces raffinose family oligosaccharide. Front. Plant Sci. 2020;11:612942. DOI:10.3389/fpls.2020.612942.; Li A., Jia S., Yobi A., Ge Z., Sato S., Zhang C., Angelovici R., Clemente T.E., Holding D.R. Editing of an alpha-kafirin gene family increases digestibility and protein quality in sorghum. Plant Physiol. 2018;177(4):1425-1438. DOI:10.1104/pp.18.00200.; Li C., Zong Y., Wang Y., Jin S., Zhang D., Song Q., Zhang R., Gao C. Expanded base editing in rice and wheat using a Cas9-adenosine deaminase fusion. Genome Biol. 2018;19:59. DOI:10.1186/s13059-018-1443-z.; Li J., Aach J., Norville J.E., Mccormack M., Bush J., Church G.M., Sheen J. Multiplex and homologous recombination-mediated plant genome editing via guide RNA/Cas9. Nat. Biotechnol. 2013;31(8): 688-691. DOI:10.1038/nbt.2654.; Li M., Li X., Zhou Z., Wu P., Fang M., Pan X., Lin Q., Luo W., Wu G., Li H. Reassessment of the four yield-related genes Gn1a, DEP1, GS3, and IPA1 in rice using a CRISPR/Cas9 system. Front. Plant Sci. 2016;7:377. DOI:10.3389/fpls.2016.00377.; Li R., Fu D., Zhu B., Luo Y., Zhu H. CRISPR/Cas9-mediated mutagenesis of lncRNA1459 alters tomato fruit ripening. Plant J. 2018; 94(3):513-524. DOI:10.1111/tpj.13872.; Li S., Gao F., Xie K., Zeng X., Cao Y., Zeng J., He Z., Ren Y., Li W., Deng Q., Wang S., Zheng A., Zhu J., Liu H., Wang L., Li P. The OsmiR396c-OsGRF4-OsGIF1 regulatory module determines grain size and yield in rice. Plant Biotechnol. J. 2016;14(11):2134-2146. DOI:10.1111/pbi.12569.; Li T., Yang X., Yu Y., Si X., Zhai X., Zhang H., Dong W., Gao C., Xu C. Domestication of wild tomato is accelerated by genome editing. Nat. Biotechnol. 2018;36:1160-1163. DOI:10.1038/nbt.4273.; Li X., Wang Y., Chen S., Tian H., Fu D., Zhu B., Luo Y., Zhu H. Lycopene is enriched in tomato fruit by CRISPR/Cas9-mediated multiplex genome editing. Front. Plant Sci. 2018;9:559. DOI:10.3389/fpls.2018.00559.; Liang Z., Chen K., Li T., Zhang Y., Wang Y., Zhao Q., Liu J., Zhang H., Liu C., Ran Y., Gao C. Efficient DNA-free genome editing of bread wheat using CRISPR/Cas9 ribonucleoprotein complexes. Nat. Commun. 2017;8:14261. DOI:10.1038/ncomms14261.; Liang Z., Zhang K., Chen K., Gao C. Targeted mutagenesis in Zea mays using TALENs and the CRISPR/Cas system. J. Genet. Genomics. 2014;41(2):63-68. DOI:10.1016/j.jgg.2013.12.001.; Liu J., Chen J., Zheng X., Wu F., Lin Q., Heng Y., Tian P., Cheng Z., Yu X., Zhou K., Zhang X., Guo X., Wang J., Wang H., Wan J. GW5 acts in the brassinosteroid signalling pathway to regulate grain width and weight in rice. Nat. Plants. 2017;3:17043. DOI:10.1038/nplants.2017.43.; Liu Q., Segal D.J., Ghiara J.B., Barbas C.F. Design of polydactyl zincfinger proteins for unique addressing within complex genomes. Proc. Natl. Acad. Sci. USA. 1997;94(11):5525-5530. DOI:10.1073/pnas.94.11.5525.; Lloyd A., Plaisier C.L., Carroll D., Drews G.N. Targeted mutagenesis using zinc-finger nucleases in Arabidopsis. Proc. Natl. Acad. Sci. USA. 2005;102(6):2232-2237. DOI:10.1073/pnas.0409339102.; Lou D., Wang H., Liang G., Yu D. OsSAPK2 confers abscisic acid sensitivity and tolerance to drought stress in rice. Front. Plant Sci. 2017;8:993. DOI:10.3389/fpls.2017.00993.; Lou D., Wang H., Yu D. The sucrose non-fermenting-1-related protein kinases SAPK1 and SAPK2 function collaboratively as positive regulators of salt stress tolerance in rice. BMC Plant Biol. 2018;18(1): 203. DOI:10.1186/s12870-018-1408-0.; Lu K., Wu B., Wang J., Zhu W., Nie H., Qian J., Huang W., Fang Z. Blocking amino acid transporter OsAAP3 improves grain yield by promoting outgrowth buds and increasing tiller number in rice. Plant Biotechnol. J. 2018;16(10):1710-1722. DOI:10.1111/pbi.12907.; Lundmark K. Genetically modified maize. BioScience. 2007;57(11): 996. DOI:10.1641/B571115.; Macovei A., Sevilla N.R., Cantos C., Jonson G.B., Slamet-Loedin I., Čermák T., Voytas D.F., Choi I.-R., Chadha-Mohanty P. Novel alleles of rice eIF4G generated by CRISPR/Cas9-targeted mutagenesis confer resistance to Rice tungro spherical virus. Plant Biotechnol. J. 2018;16:1918-1927. DOI 10.1111/pbi.12927. Malzahn A., Lowder L., Qi Y. Plant genome editing with TALEN and CRISPR. Cell Biosci. 2017;7:21. DOI:10.1186/s13578-017-0148-4.; Martin-Ortigosa S., Peterson D.J., Valenstein J.S., Lin V.S.-Y., Trewyn B.G., Lyznik L.A., Wang K. Mesoporous silica nanoparticlemediated intracellular Cre protein delivery for maize genome editing via loxP site excision. Plant Physiol. 2014;164(2):537-547. DOI:10.1104/pp.113.233650.; Marvier M., McCreedy C., Regetz J., Kareiva P. A meta-analysis of effects of Bt cotton and maize on nontarget invertebrates. Science. 2007;316(5830):1475-1477. DOI:10.1126/science.1139208.; Muller H.J. Artificial transmutation of the gene. Science. 1927; 66(1699):84-87. DOI:10.1126/science.66.1699.84.; Nadson G., Philippov G. Influence des rayons X sur la sexualité et la formation des mutantes chez les Champignons inférieurs (Mucorinees). Comptes Rendues des Séances de la Société de Biologie. 1925;93(2):473-475.; Nekrasov V., Staskawicz B., Weigel D., Jones J.D.G., Kamoun S. Targeted mutagenesis in the model plant Nicotiana benthamiana using Cas9 RNA-guided endonuclease. Nat. Biotechnol. 2013;31(8):691-693. DOI:10.1038/nbt.2655.; Nekrasov V., Wang C., Win J., Lanz C., Weigel D., Kamoun S. Rapid generation of a transgene-free powdery mildew resistant tomato by genome deletion. Sci. Rep. 2017;7:482. DOI:10.1038/s41598-017-00578-x.; Nonaka S., Arai C., Takayama M., Matsukura C., Ezura H. Efficient increase of γ-aminobutyric acid (GABA) content in tomato fruits by targeted mutagenesis. Sci. Rep. 2017;7:7057. DOI:10.1038/s41598-017-06400-y.; Okuzaki A., Ogawa T., Koizuka C., Kaneko K., Inaba M., Imamura J., Koizuka N. CRISPR/Cas9-mediated genome editing of the fatty acid desaturase 2 gene in Brassica napus. Plant Physiol. Biochem. 2018;131:63-69. DOI:10.1016/j.plaphy.2018.04.025.; Okuzaki A., Toriyama K. Chimeric RNA/DNA oligonucleotide-directed gene targeting in rice. Plant Cell Rep. 2004;22(7):509-512. DOI:10.1007/s00299-003-0698-2.; Ortigosa A., Gimenez-Ibanez S., Leonhardt N., Solano R. Design of a bacterial speck resistant tomato by CRISPR/Cas9-mediated editing of SlJAZ2. Plant Biotechnol. J. 2018;17(3):665-673. DOI:10.1111/pbi.13006.; Peer R., Rivlin G., Golobovitch S., Lapidot M., Gal-On A., Vainstein A., Tzfira T., Flaishman M.A. Targeted mutagenesis using zinc-finger nucleases in perennial fruit trees. Planta. 2015;241(4):941-951. DOI:10.1007/s00425-014-2224-x.; Qi W., Zhu T., Tian Z., Li C., Zhang W., Song R. High-efficiency CRISPR/Cas9 multiplex gene editing using the glycine tRNA-processing system-based strategy in maize. BMC Biotechnol. 2016; 16:58. DOI:10.1186/s12896-016-0289-2.; Rapoport I.A. Carbonyl compounds and the chemical mechanism of mutations. Doklady AN SSSR = Proceedings of the Academy of Sciences of the USSR. 1946;54:65-68. (in Russian); Ruiter R., Van Den Brande I., Stals E., Delaure S., Cornelissen M., D’Halluin K. Spontaneous mutation frequency in plants obscures the effect of chimeraplasty. Plant Mol. Biol. 2003;53(5):715-729. DOI:10.1023/B:PLAN.0000019111.96107.01.; Russian Sun Flower. Krasnodar: Sovetskaya Kuban Publ., 2007. (in Russian); Sakuraba Y., Sezutsu H., Takahasi K.R., Tsuchihashi K., Ichikawa R., Fujimoto N., Kaneko S., Nakai Y., Uchiyama M., Goda N., Motoi R., Ikeda A., Karashima Y., Inoue M., Kaneda H., Masuya H., Minowa O., Noguchi H., Toyoda A., Sakaki Y., Wakana S., Noda T., Shiroishi T., Gondo Y. Molecular characterization of ENU mouse mutagenesis and archives. Biochem. Biophys. Res. Commun. 2005; 336(2):609-616. DOI:10.1016/j.bbrc.2005.08.134.; Sánchez-León S., Gil-Humanes J., Ozuna C.V., Giménez M.J., Sousa C., Voytas D.F. Low-gluten, nontransgenic wheat engineered with CRISPR/Cas9. Plant Biotechnol. J. 2018;16(4):902-910. DOI:10.1111/pbi.12837.; Sapehin A.A. Röntgen-Mutationen beim Weizen (Triticum vulgare). Der Züchter. 1930;2:257-259.; Savitskaya E.E., Musharova O.S., Severinov K.V. Diversity of CRISPR-Cas-mediated mechanisms of adaptive immunity in prokaryotes and their application in biotechnology. Biochemistry (Moscow). 2016;81(7):653-661. DOI:10.1134/S0006297916070026.; Schütte G., Eckerstorfer M., Rastelli V., Reichenbecher W., RestrepoVassalli S., Ruohonen-Lehto M., Saucy A.-G.W., Mertens M. Herbicide resistance and biodiversity: agronomic and environmental aspects of genetically modified herbicide-resistant plants. Environ. Sci. Eur. 2017;29(1):5. DOI:10.1186/s12302-016-0100-y; Shan Q., Wang Y., Li J., Zhang Y., Chen K., Liang Z., Zhang K., Liu J., Xi J.J., Qiu J.-L., Gao C. Targeted genome modification of crop plants using a CRISPR-Cas system. Nat. Biotechnol. 2013;31(8): 686-688. DOI:10.1038/nbt.2650.; Shi J., Gao H., Wang H., Lafitte H.R., Archibald R.L., Yang M., Hakimi S.M., Mo H., Habben J.E. ARGOS8 variants generated by CRISPR-Cas9 improve maize grain yield under field drought stress conditions. Plant Biotechnol. J. 2017;15(2):207-216. DOI:10.1111/pbi.12603.; Shim J.S., Oh N., Chung P.J., Kim Y.S., Choi Y.D., Kim J.K. Overexpression of OsNAC14 improves drought tolerance in rice. Front. Plant Sci. 2018;9:310. DOI:10.3389/fpls.2018.00310.; Shukla V.K., Doyon Y., Miller J.C., DeKelver R.C., Moehle E.A., Worden S.E., … Gregory P.D., Urnov F.D. Precise genome modification in the crop species Zea mays using zinc-finger nucleases. Nature. 2009;459(7245):437-441. DOI:10.1038/nature07992.; Smithies O., Gregg R.G., Boggs S.S., Koralewski M.A., Kucherlapati R.S. Insertion of DNA sequences into the human chromosomal β-globin locus by homologous recombination. Nature. 1985; 317(6034):230-234. DOI:10.1038/317230a0.; Strygina K.V., Khlestkina E.K. Wheat, barley and maize genes editing using the CRISPR/Cas system. Biotekhnologiya i Selektsiya Rasteniy = Biotechnology and Plant Breeding. 2020;3(1):46-55. DOI:10.30901/2658-6266-2020-1-o2. (in Russian); Stubbe H. Mutanten der Kulturtomate Lycopersicon esculentum Miller I. Die Kulturpf lanze. 1957;5:190-220. DOI:10.1007/BF02095495.; Sun Y., Jiao G., Liu Z., Zhang X., Li J., Guo X., Du W., Du J., Francis F., Zhao Y., Xia L. Generation of high-amylose rice through CRISPR/Cas9-mediated targeted mutagenesis of starch branching enzymes. Front. Plant Sci. 2017;8:298. DOI:10.3389/fpls.2017.00298.; Sur S., Pagliarini R., Bunz F., Rago C., Diaz L.A., Kinzler K.W., Vogelstein B., Papadopoulosa N. A panel of isogenic human cancer cells suggests a therapeutic approach for cancers with inactivated p53. Proc. Natl. Acad. Sci. USA. 2009;106(10):3964-3969. DOI:10.1073/pnas.0813333106.; Svitashev S., Schwartz C., Lenderts B., Young J.K., Cigan A.M. Genome editing in maize directed by CRISPR-Cas9 ribonucleoprotein complexes. Nat. Commun. 2016;7:13274. DOI:10.1038/ncomms13274.; Tan S., Evans R.R., Dahmer M.L., Singh B.K., Shaner D.L. Imidazolinone-tolerant crops: history, current status and future. Pest Manag. Sci. 2005;61(3):246-257. DOI:10.1002/ps.993.; Tashkandi M., Ali Z., Aljedaani F., Shami A., Mahfouz M.M. Engineering resistance against Tomato yellow leaf curl virus via the CRISPR/Cas9 system in tomato. Plant Signal. Behav. 2018;13(10): e1525996. DOI:10.1080/15592324.2018.1525996.; Timofeeff-Ressovsky N.W. The effect of X-rays in producing somatic genovariations of a definite locus in different directions in Drosophila melanogaster. Am. Nat. 1929;63(685):118-124.; Townsend J.A., Wright D.A., Winfrey R.J., Fu F., Maeder M.L., Joung J.K., Voytas D.F. High frequency modification of plant genes using engineered zinc finger nucleases. Nature. 2009;459:442-445. DOI:10.1038/nature07845.; Wang F., Wang C., Liu P., Lei C., Hao W., Gao Y., Liu Y.-G., Zhao K. Enhanced rice blast resistance by CRISPR/Cas9-targeted mutagenesis of the ERF transcription factor gene OsERF922. PLoS One. 2016;11(4):e0154027. DOI:10.1371/journal.pone.0154027.; Wang L., Chen L., Li R., Zhao R., Yang M., Sheng J., Shen L. Reduced drought tolerance by CRISPR/Cas9-mediated SlMAPK3 mutagenesis in tomato plants. J. Agric. Food Chem. 2017;65(39):8674-8682. DOI:10.1021/acs.jafc.7b02745.; Wang W., Pan Q., Tian B., He F., Chen Y., Bai G., Akhunova A., Trick H.N., Akhunov E. Gene editing of the wheat homologs of TONNEAU1-recruiting motif encoding gene affects grain shape and weight in wheat. Plant J. 2019;100(2):251-264. DOI:10.1111/tpj.14440.; Wang W., Simmonds J., Pan Q., Davidson D., He F., Battal A., Akhunova A., Trick H.N., Uauy C., Akhunov E. Gene editing and mutagenesis reveal inter-cultivar differences and additivity in the contribution of TaGW2 homoeologues to grain size and weight in wheat. Theor. Appl. Genet. 2018;131(11):2463-2475. DOI:10.1007/s00122-018-3166-7.; Wang X., Tu M., Wang D., Liu J., Li Y., Li Z., Wang Y., Wang X. CRISPR/Cas9-mediated efficient targeted mutagenesis in grape in the first generation. Plant Biotechnol. J. 2018;16(4):844-855. DOI:10.1111/pbi.12832.; Wang Y., Cheng X., Shan Q., Zhang Y., Liu J., Gao C., Qiu J.L. Simultaneous editing of three homoeoalleles in hexaploid bread wheat confers heritable resistance to powdery mildew. Nat. Biotechnol. 2014;32(9):947-951. DOI:10.1038/nbt.2969.; Watanabe K., Breier U., Hensel G., Kumlehn J., Schubert I., Reiss B. Stable gene replacement in barley by targeted double-strand break induction. J. Exp. Bot. 2015;67(5):1433-1445. DOI:10.1093/jxb/erv537.; Weising K., Schell J., Kahl G. Foreign genes in plants: transfer, structure, expression, and applications. Annu. Rev. Genet. 1988;22:421-477. DOI:10.1146/annurev.ge.22.120188.002225.; Woo J.W., Kim J., Kwon S., Corvalán C., Cho S.W., Kim H., Kim S.-G., Kim S.-T., Choe S., Kim J.-S. DNA-free genome editing in plants with preassembled CRISPR-Cas9 ribonucleoproteins. Nat. Biotechnol. 2015;33:1162-1164. DOI:10.1038/nbt.3389.; Wu K.-M., Lu Y.-H., Feng H.-Q., Jiang Y.-Y., Zhao J.-Z. Suppression of cotton bollworm in multiple crops in China in areas with Bt toxin-containing cotton. Science. 2008;321(5896):1676-1678. DOI:10.1126/science.1160550.; Zetsche B., Gootenberg J.S., Abudayyeh O.O., Slaymaker I.M., Makarova K.S., Essletzbichler P., Volz S.E., Joung J., Oost J., Regev A., Koonin E.V., Zhang F. Cpf1 is a single RNA-guided endonuclease of a class 2 CRISPR-Cas system. Cell. 2015;163(3):759-771. DOI:10.1016/j.cell.2015.09.038.; Zhang A., Liu Y., Wang F., Li T., Chen Z., Kong D., Bi J., Zhang F., Luo X., Wang J., Tang J., Yu X., Liu G., Luo L. Enhanced rice salinity tolerance via CRISPR/Cas9-targeted mutagenesis of the OsRR22 gene. Mol. Breed. 2019;39:47. DOI:10.1007/s11032-019-0954-y.; Zhang J., Zhang H., Botella J.R., Zhu J.-K. Generation of new glutinous rice by CRISPR/Cas9-targeted mutagenesis of the Waxy gene in elite rice varieties. J. Integr. Plant Biol. 2018;60(5):369-375. DOI:10.1111/jipb.12620.; Zhang P., Du H., Wang J., Pu Y., Yang C., Yan R., Yang H., Cheng H., Yu D. Multiplex CRISPR/Cas9-mediated metabolic engineering increases soya bean isoflavone content and resistance to soya bean mosaic virus. Plant Biotechnol. J. 2019;18(6):1384-1395. DOI:10.1111/pbi.13302.; Zhang Y., Bai Y., Wu G., Zou S., Chen Y., Gao C., Tang D. Simultaneous modification of three homoeologs of TaEDR1 by genome editing enhances powdery mildew resistance in wheat. Plant J. 2017; 91(4):714-724. DOI:10.1111/tpj.13599.; Zhang Z., Ge X., Luo X., Wang P., Fan Q., Hu G., Xiao J., Li F., Wu J. Simultaneous editing of two copies of Gh14-3-3d confers enhanced transgene-clean plant defense against Verticillium dahliae in allotetraploid upland cotton. Front. Plant Sci. 2018;9:842. DOI:10.3389/fpls.2018.00842.; Zhang Z., Hua L., Gupta A., Tricoli D., Edwards K.J., Yang B., Li W. Development of an Agrobacterium-delivered CRISPR/Cas9 system for wheat genome editing. Plant Biotechnol. J. 2019;17(8):1623-1635. DOI:10.1111/pbi.13088.; Zhou J., Peng Z., Long J., Sosso D., Liu B., Eom J.S., Huang S., Liu S., Cruz C.V., Frommer W.B., White F.F., Yang B. Gene targeting by the TAL effector PthXo2 reveals cryptic resistance gene for bacterial blight of rice. Plant J. 2015;82:632-643.; Zhu T., Mettenburg K., Peterson D.J., Tagliani L., Baszczynski C.L. Engineering herbicide-resistant maize using chimeric RNA/DNA oligonucleotides. Nat. Biotechnol. 2000;18:555-558. DOI:10.1038/75435.; Zhu T., Peterson D.J., Tagliani L., Clair G.S., Baszczynski C.L., Bowen B. Targeted manipulation of maize genes in vivo using chimeric RNA/DNA oligonucleotides. Proc. Natl. Acad. Sci. USA. 1999; 96(15):8768-8773. DOI:10.1073/pnas.96.15.87.; Zlobin N.E., Ternovoy V.V., Grebenkina N.A., Taranov V.V. Making complex things simpler: modern tools to edit the plant genome. Vavilovskii Zhurnal Genetiki i Selektsii = Vavilov Journal of Genetics and Breeding. 2017;21(1):104-111. DOI:10.18699/VJ17.228. (in Russian); Zong Y., Wang Y., Li C., Zhang R., Chen K., Ran Y., Qiu J.-L., Wang D., Gao C. Precise base editing in rice, wheat and maize with a Cas9-cytidine deaminase fusion. Nat. Biotechnol. 2017;35(5):438-440. DOI:10.1038/nbt.3811.; Zsögön A., Cermak T., Voytas D., Peres L.E. Genome editing as a tool to achieve the crop ideotype and de novo domestication of wild relatives: Case study in tomato. Plant Sci. 2017;256:120-130. DOI:10.1016/j.plantsci.2016.12.012.; https://vavilov.elpub.ru/jour/article/view/3538

  14. 14
    Academic Journal

    Πηγή: Medical Genetics; Том 20, № 7 (2021); 37-44 ; Медицинская генетика; Том 20, № 7 (2021); 37-44 ; 2073-7998

    Περιγραφή αρχείου: application/pdf

    Relation: https://www.medgen-journal.ru/jour/article/view/1947/1502; McKenna W.J., Maron B.J., Thiene G. Classification, epidemiology, and global burden of cardiomyopathies. Circulation Research 2017;121:722-30. https://doi.org/10.1161/CIRCRESAHA.117.309711.; Elliott P., Andersson B., Arbustini E., et al. Classification of the cardiomyopathies: A position statement from the european society of cardiology working group on myocardial and pericardial diseases. European Heart Journal 2008;29:270-6. https://doi.org/10.1093/eurheartj/ehm342.; Westphal J.G., Rigopoulos A.G., Bakogiannis C., et al. The MOGE(S) classification for cardiomyopathies: current status and future outlook. Heart Failure Reviews 2017;22:743-52. https://doi.org/10.1007/s10741-017-9641-4.; Paulin D., Li Z. Desmin: A major intermediate filament protein essential for the structural integrity and function of muscle. Experimental Cell Research 2004;301:1-7. https://doi.org/10.1016/j.yexcr.2004.08.004.; Goldfarb L.G., Dalakas M.C. Tragedy in a heartbeat: Malfunctioning desmin causes skeletal and cardiac muscle disease. Journal of Clinical Investigation 2009;119:1806-13. https://doi.org/10.1172/JCI38027.; McLendon P.M., Robbins J. Desmin-related cardiomyopathy: An unfolding story. American Journal of Physiology - Heart and Circulatory Physiology 2011;301. https://doi.org/10.1152/ajpheart.00601.2011.; van Spaendonck-Zwarts K.Y., van Hessem L., Jongbloed J.D.H., et al. Desmin-related myopathy. Clinical Genetics 2011;80:354-66. https://doi.org/10.1111/j.1399-0004.2010.01512.x.; Li Z., Mericskay M., Agbulut O., et al. Desmin is essential for the tensile strength and integrity of myofibrils but not for myogenic commitment, differentiation, and fusion of skeletal muscle. Journal of Cell Biology 1997;139:129-44. https://doi.org/10.1083/jcb.139.1.129.; Goldfarb L.G., Park K.Y., Cervenákova L., et al. Missense mutations in desmin associated with familial cardiac and skeletal myopathy. Nature Genetics 1998;19:402-3. https://doi.org/10.1038/1300.; Arbustini E., Pasotti M., Pilotto A., et al. Desmin accumulation restrictive cardiomyopathy and atrioventricular block associated with desmin gene defects. European Journal of Heart Failure 2006;8:477-83. https://doi.org/10.1016/j.ejheart.2005.11.003.; HGMD® DES gene result n.d. http://www.hgmd.cf.ac.uk/ac/gene.php?gene=DES (accessed September 14, 2020).; Capetanaki Y., Papathanasiou S., Diokmetzidou A., et al. Desmin related disease: A matter of cell survival failure. Current Opinion in Cell Biology 2015;32:113-20. https://doi.org/10.1016/j.ceb.2015.01.004.; Goldfarb L.G., Olivé M., Vicart P., et al. Intermediate filament diseases: Desminopathy. Advances in Experimental Medicine and Biology 2008;642:131-64. https://doi.org/10.1007/978-0-387-84847-1_11.; Taylor M.R.G., Slavov D., Ku L., et al. Prevalence of desmin mutations in dilated cardiomyopathy. Circulation 2007;115:1244-51. https://doi.org/10.1161/CIRCULATIONAHA.106.646778.; Hunt S.A., Abraham W.T., Chin M.H., et al. ACC/AHA 2005 Guideline Update for the Diagnosis and Management of Chronic Heart Failure in the Adult. Circulation 2005;112. https://doi.org/10.1161/circulationaha.105.167586.; Heckmann M.B., Bauer R., Jungmann A., et al. AAV9-mediated gene transfer of desmin ameliorates cardiomyopathy in desmin-deficient mice. Gene Therapy 2016;23:673-9. https://doi.org/10.1038/gt.2016.40.; Wang X., Klevitsky R., Huang W., et al. αB-Crystallin Modulates Protein Aggregation of Abnormal Desmin. Circulation Research 2003;93:998-1005. https://doi.org/10.1161/01.RES.0000102401.77712.ED.; Pawelczak K.S., Gavande N.S., Vander Vere-Carozza P.S., et al. Modulating DNA Repair Pathways to Improve Precision Genome Engineering. ACS Chemical Biology 2018;13:389-96. https://doi.org/10.1021/acschembio.7b00777.; McLaughlin H.M., Kelly M.A., Hawley P.P., et al. Compound heterozygosity of predicted loss-of-function DES variants in a family with recessive desminopathy. BMC Medical Genetics 2013;14:68. https://doi.org/10.1186/1471-2350-14-68.; Brinkman E.K., Chen T., Amendola M., et al. Easy quantitative assessment of genome editing by sequence trace decomposition. Nucleic Acids Research 2014;42. https://doi.org/10.1093/nar/gku936.

  15. 15
    Academic Journal

    Πηγή: Medical Genetics; Том 20, № 8 (2021); 3-10 ; Медицинская генетика; Том 20, № 8 (2021); 3-10 ; 2073-7998

    Περιγραφή αρχείου: application/pdf

    Relation: https://www.medgen-journal.ru/jour/article/view/1957/1505; Liu M., Rehman S., Tang X., Gu K., Fan Q., Chen D., et al. Methodologies for Improving HDR Efficiency. Front Genet [Internet]. 2019 [cited 2021 Jul 15];9(JAN). Available from: https://pubmed.ncbi.nlm.nih.gov/30687381/; Scully R., Panday A., Elango R., Willis N.A. DNA double-strand break repair-pathway choice in somatic mammalian cells [Internet]. Vol. 20, Nature Reviews Molecular Cell Biology. Nature Publishing Group; 2019 [cited 2020 Jul 20]. p. 698-714. Available from: https://www.nature.com/articles/s41580-019-0152-0; Panier S., Boulton S.J. Double-strand break repair: 53BP1 comes into focus. Nat Rev Mol Cell Biol [Internet]. 2014 Jan 11 [cited 2019 Feb 12];15(1):7-18. Available from: http://www.nature.com/articles/nrm3719; Shibata A. Regulation of repair pathway choice at two-ended DNA double-strand breaks. Mutat Res Mol Mech Mutagen [Internet]. 2017 Oct [cited 2019 Feb 7];803-805:51-5. Available from: http://www.ncbi.nlm.nih.gov/pubmed/28781144; Mali P., Yang L., Esvelt K.M., Aach J., Guell M., DiCarlo J.E., et al. RNA-Guided Human Genome Engineering via Cas9. Science [Internet]. 2013 Feb 15 [cited 2021 Jul 15];339(6121):823. Available from: /pmc/articles/PMC3712628/; He X., Tan C., Wang F., Wang Y., Zhou R., Cui D., et al. Knock-in of large reporter genes in human cells via CRISPR/Cas9-induced homology-dependent and independent DNA repair. Nucleic Acids Res [Internet]. 2016 May 19 [cited 2021 Jul 15];44(9):e85. Available from: /pmc/articles/PMC4872082/; Cui X., Ji D., Fisher D., Wu Y., Briner D., Weinstein E. Targeted integration in rat and mouse embryos with zinc-finger nucleases. Nat Biotechnol [Internet]. 2011 Jan [cited 2021 Jul 15];29(1):64-8. Available from: https://pubmed.ncbi.nlm.nih.gov/21151125/; Zhu Z., González F., Huangfu D. The iCRISPR platform for rapid genome editing in human Pluripotent Stem Cells. Methods Enzymol [Internet]. 2014 [cited 2021 Jul 15];546(C):215. Available from: /pmc/articles/PMC4418970/; Canny M.D., Moatti N., Wan L.C.K., Fradet-Turcotte A., Krasner D., Mateos-Gomez P.A., et al. Inhibition of 53BP1 favors homology-dependent DNA repair and increases CRISPR-Cas9 genome-editing efficiency. Nat Biotechnol. 2017 Nov;36(1):95-102.; Charpentier M., Khedher A.H.Y, Menoret S., Brion A., Lamribet K., Dardillac E., et al. CtIP fusion to Cas9 enhances transgene integration by homology-dependent repair. Nat Commun 2018 91 [Internet]. 2018 Mar 19 [cited 2021 Jul 15];9(1):1-11. Available from: https://www.nature.com/articles/s41467-018-03475-7; Hu Z., Shi Z., Guo X., Jiang B., Wang G., Luo D., et al. Ligase IV inhibitor SCR7 enhances gene editing directed by CRISPR-Cas9 and ssODN in human cancer cells. Cell Biosci. 2018 Dec;8(1):12.; Smirnikhina S.A., Anuchina A.A., Lavrov A.V. Ways of improving precise knock-in by genome-editing technologies. Hum Genet [Internet]. 2019 Jan 2 [cited 2019 Feb 5];138(1):1-19. Available from: http://www.ncbi.nlm.nih.gov/pubmed/30390160; Avolio R., Järvelin A.I., Mohammed S., Agliarulo I., Condelli V., Zoppoli P., et al. Protein Syndesmos is a novel RNA-binding protein that regulates primary cilia formation. Nucleic Acids Res. 2018;46(22):12067-86.; Kim H., Yoo J., Lee I., Kang Y.J., Cho H.S., Lee W. Crystal structure of syndesmos and its interaction with Syndecan-4 proteoglycan. Biochem Biophys Res Commun [Internet]. 2015 Jul 13 [cited 2020 Apr 3];463(4):762-7. Available from: https://linkinghub.elsevier.com/retrieve/pii/S0006291X15300632; Baciu P.C., Saoncella S., Lee S.H., Denhez F., Leuthardt D., Goetinck P.F. Syndesmos, a protein that interacts with the cytoplasmic domain of syndecan-4, mediates cell spreading and actin cytoskeletal organization. J Cell Sci [Internet]. 2000 Jan [cited 2019 Nov 25];113 Pt 2:315-24. Available from: http://www.ncbi.nlm.nih.gov/pubmed/10633082; Denhez F., Wilcox-Adelman S.A., Baciu P.C., Saoncella S., Lee S., French B., et al. Syndesmos, a syndecan-4 cytoplasmic domain interactor, binds to the focal adhesion adaptor proteins paxillin and Hic-5. J Biol Chem. 2002 Apr 5;277(14):12270-4.; Drané P., Brault M.E., Cui G., Meghani K., Chaubey S., Detappe A., et al. TIRR regulates 53BP1 by masking its histone methyl-lysine binding function. Nature [Internet]. 2017;543(7644):211-6. Available from: http://dx.doi.org/10.1038/nature21358; Zhang A., Peng B., Huang P., Chen J., Gong Z. The p53-binding protein 1-Tudor-interacting repair regulator complex participates in the DNA damage response. J Biol Chem [Internet]. 2017 Apr 21 [cited 2019 Feb 6];292(16):6461-7. Available from: http://www.ncbi.nlm.nih.gov/pubmed/28213517; Drané P., Chowdhury D. TIRR and 53BP1- partners in arms. Cell Cycle [Internet]. 2017;16(13):1235-6. Available from: https://doi.org/10.1080/15384101.2017.1337966; Laboratory of virology and genetics EPFL [Internet]. [cited 2021 Jul 15]. Available from: https://www.epfl.ch/labs/tronolab/; Cloud-Based Informatics Platform for Life Sciences R&D %7C Benchling [Internet]. [cited 2021 Jul 15]. Available from: https://www.benchling.com/; Yang D., Scavuzzo M.A., Chmielowiec J., Sharp R., Bajic A., Borowiak M. Enrichment of G2/M cell cycle phase in human pluripotent stem cells enhances HDR-mediated gene repair with customizable endonucleases. Sci Rep [Internet]. 2016 Feb 18 [cited 2020 Oct 14];6(1):1-15. Available from: www.nature.com/scientificreports/; Zhang J.-P., Li X.-L., Li G.-H., Chen W., Arakaki.C, Botimer G.D., et al. Efficient precise knockin with a double cut HDR donor after CRISPR/Cas9-mediated double-stranded DNA cleavage. Genome Biol [Internet]. 2017 Dec 20 [cited 2019 Feb 6];18(1):35. Available from: http://genomebiology.biomedcentral.com/articles/10.1186/s13059-017-1164-8; Lin S., Staahl B.T., Alla R.K., Doudna J.A. Enhanced homology-directed human genome engineering by controlled timing of CRISPR/Cas9 delivery. Elife. 2014;3:e04766.; Gerlach M., Kraft T., Brenner B., Petersen B., Niemann H., Montag J., et al. Efficient Knock-in of a Point Mutation in Porcine Fibroblasts Using the CRISPR/Cas9-GMNN Fusion Gene. Genes (Basel) [Internet]. 2018 Jun 13 [cited 2019 Feb 14];9(6):296. Available from: http://www.mdpi.com/2073-4425/9/6/296; Shao S., Ren C., Liu Z., Bai Y., Chen Z., Wei Z., et al. Enhancing CRISPR/Cas9-mediated homology-directed repair in mammalian cells by expressing Saccharomyces cerevisiae Rad52. Int J Biochem Cell Biol [Internet]. 2017 Nov 1 [cited 2020 Apr 1];92:43-52. Available from: https://linkinghub.elsevier.com/retrieve/pii/S1357272517302388; Stazio M. Di, Foschi N., Athanasakis E., Gasparini P., d’Adamo A.P. Systematic analysis of factors that improve homologous direct repair (HDR) efficiency in CRISPR/Cas9 technique. PLoS One [Internet]. 2021 Mar 1 [cited 2021 Jul 15];16(3):e0247603. Available from: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0247603; Li G., Wang H., Zhang X., Wu Z., Yang H. A Cas9-transcription factor fusion protein enhances homology-directed repair efficiency. J Biol Chem. 2021 Jan 1;296:100525.; Maurissen T.L., Woltjen K. Synergistic gene editing in human iPS cells via cell cycle and DNA repair modulation. Nat Commun [Internet]. 2020 Dec 1 [cited 2021 Jul 15];11(1). Available from: /pmc/articles/PMC7280248/; Botuyan M.V., Cui G., Drané P., Oliveira C., Detappe A., Brault M.E., et al. Mechanism of 53BP1 activity regulation by RNA-binding TIRR and a designer protein. Nat Struct Mol Biol. 2018;1-10.; Wang J., Yuan Z., Cui Y., Xie R., Yang G., Kassab M.A., et al. Molecular basis for the inhibition of the methyl-lysine binding function of 53BP1 by TIRR. Nat Commun. 2018;9(1):2689.; Anuchina A.A., Lavrov A.V., Smirnikhina S.A. TIRR: a potential front runner in HDR race-hypotheses and perspectives [Internet]. Vol. 47, Molecular Biology Reports. Springer; 2020 [cited 2020 Apr 3]. p. 2371-9. Available from: http://www.ncbi.nlm.nih.gov/pubmed/32036573

  16. 16
    Academic Journal

    Συνεισφορές: This work was supported by the Russian Science Foundation, project 16-14-00086.

    Πηγή: Vavilov Journal of Genetics and Breeding; Том 24, № 4 (2020); 348-355 ; Вавиловский журнал генетики и селекции; Том 24, № 4 (2020); 348-355 ; 2500-3259

    Περιγραφή αρχείου: application/pdf

    Relation: https://vavilov.elpub.ru/jour/article/view/2643/1390; Афанасенко О.С. Генетическая защита растений: проблемы и перспективы. Защита и карантин растений. 2016;1:13-16.; Брагина М.К., Афонников Д.А., Салина Е.А. Прогресс в секвенировании геномов растений – направления исследований. Вавиловский журнал генетики и селекции. 2019;23(1):38-48. DOI 10.18699/VJ19.459.; Короткова А.М., Герасимова С.В., Шумный В.К., Хлесткина Е.К. Гены сельскохозяйственных растений, модифицированные с помощью системы CRISPR/Cas. Вавиловский журнал генетики и селекции. 2017;21(2):250-258. DOI 10.18699/VJ17.244.; Хлесткина Е.К. Молекулярные методы анализа структурно-функциональной организации генов. Вавиловский журнал генетики и селекции. 2011;15(4):757-768.; Хлесткина Е.К. Молекулярные маркеры в генетических исследованиях и в селекции. Вавиловский журнал генетики и селекции. 2013;17(4/2):1044-1054.; Хлесткина Е.К., Шумный В.К. Перспективы использования прорывных технологий в селекции: система CRISPR/Cas9 для редактирования генома растений. Генетика. 2016;52(7):774-787. DOI 10.7868/s0016675816070055.; Щапова А.И. О структуре кариотипа и порядке расположения хромосом в интерфазном ядре. Цитология. 1971;13(9):1157-1163.; Anamthawat-Jónsson K., Heslop-Harrison J.S. Centromeres, telomeres and chromatin in the interphase nucleus of cereals. Caryologia. 1990;43(3-4):205-213. DOI 10.1080/00087114.1990.10796999.; Andrews K.R., Good J.M., Miller M.R., Luikart G., Hohenlohe P.A. Harnessing the power of RADseq for ecological and evolutionary genomics. Nat. Rev. Genet. 2016;17(2):81-92. DOI 10.1038/nrg.2015.28.; Appels R., Eversole K., Feuillet C., Keller B., Rogers J., Stein N., Pozniak C.J., ., Visendi P., Cui L., Du X., Feng K., Nie X., Tong W., Wang L. Shifting the limits in wheat research and breeding using a fully annotated reference genome. Science. 2018;361(6403): eaar7191. DOI 10.1126/science.aar7191.; Ariyadasa R., Mascher M., Nussbaumer T., Schulte D., Frenkel Z., Poursarebani N., Zhou R., Steuernagel B., Gundlach H., Taudien S., Felder M., Platzer M., Himmelbach A., Schmutzer T., Hedley P.E., Muehlbauer G.J., Scholz U., Koro A., Mayer K.F.X., Waugh R., Langridge P., Graner A., Stein N. A sequence-ready physical map of barley anchored genetically by two million single-nucleotide polymorphisms. Plant Physiol. 2014;164(1):412-423. DOI 10.1104/pp.113.228213.; Bayer M.M., Rapazote-Flores P., Ganal M., Hedley P.E., Macaulay M., Plieske J., Ramsay L., Russell J., Shaw P.D., Thomas W., Waugh R. Development and evaluation of a barley 50k iSelect SNP array. Front. Plant Sci. 2017;8:1792. DOI 10.3389/fpls.2017.01792.; Blennow A., Jensen S.L., Shaik S.S., Skryhan K., Carciofi M., Holm P.B., Hebelstrup K.H., Tanackovic V. Future cereal starch bioengineering: cereal ancestors encounter gene technology and designer enzymes. Cereal Chem. 2013:90(4):274-287.; Botstein D., White R.L., Skolnick M., Davis R.V. Construction of a genetic linkage map in man using restriction fragment length polymorphisms. Am. J. Hum. Genet. 1980;32:314-331.; Chutimanitsakun Y., Nipper R.W., Cuesta-Marcos A., Cistué L., Corey A., Filichkina T., Johnson E.A., Hayes P.M. Construction and application for QTL analysis of a restriction site associated DNA (RAD) linkage map in barley. BMC Genomics. 2011;12(1):4. DOI 10.1186/1471-2164-12-4.; Cistué L., Cuesta-Marcos A., Chao S., Echávarri B., Chutimanitsakun Y., Corey A., Filichkina T., Garcia-Mariño N., Romagosa I., Hayes P.M. Comparative mapping of the Oregon Wolfe Barley using doubled haploid lines derived from female and male gametes. Theor. Appl. Genet. 2011;122(7):1399-1410.; Close T.J., Bhat P.R., Lonardi S., Wu Y., Rostoks N., Ramsay L., Druka A., Stein N., Svensson J.T., Wanamaker S., Bozdag S., Roose M.L., Moscou M.J., Chao S., Varshney R.K., Szűcs P., Sato K., Hayes P.M., Matthews D.E., Kleinhofs A., Muehlbauer G.J., DeYoung J., Marshall D.F., Madishetty K., Fenton R.D., Condamine P., Graner A., Waugh R. Development and implementation of high-throughput SNP genotyping in barley. BMC Genomics. 2009; 10:582. DOI 10.1186/1471-2164-10-582.; Comadran J., Kilian B., Russell J., Ramsay L., Stein N., Ganal M., Shaw P., Bayer M., Thomas W., Marshall D., Hedley P., Tondelli A., Pecchioni N., Francia E., Korzun V., Walther A., Waugh R. Natural variation in a homolog of antirrhinum CENTRORADIALIS contributed to spring growth habit and environmental adaptation in cultivated barley. Nat. Genet. 2012;44(12):1388-1391. DOI 10.1038/ng.2447.; Cowan C.R., Carlton P.M., Cande W.Z. The polar arrangement of telomeres in interphase and meiosis. Rabl organization and the bouquet. Plant Physiol. 2001;125(2):532-538. DOI 10.1104/pp.125.2.532.; Darrier B., Russell J., Milner S.G., Hedley P.E., Shaw P.D., Macaulay M., Ramsay L.D., Halpin C., Mascher M., Fleury D.L., Langridge P., Stein N., Waugh R. A comparison of mainstream genotyping platforms for the evaluation and use of barley genetic resources. Front. Plant Sci. 2019;10:1-14. DOI 10.3389/fpls.2019.00544.; Davey J.W., Hohenlohe P.A., Etter P.D., Boone J.Q., Catchen J.M., Blaxter M.L. Genome-wide genetic marker discovery and genotyping using next-generation sequencing. Nat. Rev. Genet. 2011;12(7): 499-510. DOI 10.1038/nrg3012.; Dong F., Jiang J. Non-rabl patterns of centromere and telomere distribution in the interphase nuclei of plant cells. Chromosome Res. 1998;6(7):551-558. DOI 10.1023/A:1009280425125.; Elshire R.J., Glaubitz J.C., Sun Q., Poland J.A., Kawamoto K., Buckler E.S., Mitchell S.E. A robust, simple genotyping-by-sequencing (GBS) approach for high diversity species. PLoS One. 2011;6(5): e19379. DOI 10.1371/journal.pone.0019379.; Fan J.B., Oliphant A., Shen R., Kermani B.G., Garcia F., Gunderson K.L., Hansen M.J., Steemers F., Butler S.L., Deloukas P., Galver L., Hunt S., Mcbride C., Bibikova M., Rubano T., Chen J., Wickham E., Doucet D., Chang W., Campbell D., Zhang B., Kruglyak S., Bentley D., Haas J., Rigault P., Zhou L., Stuelpnagel J., Chee M.S. Highly parallel SNP genotyping. Cold Spring Harb. Symp. Quant. Biol. 2003;68:69-78. DOI 10.1101/sqb.2003.68.69.; Fan X., Zhu J., Dong W., Sun Y., Lv C., Guo B., Xu R. Comparative mapping and candidate gene analysis of SSIIa associated with grain amylopectin content in barley (Hordeum vulgare L.). Front. Plant Sci. 2017;8:1531. DOI 10.3389/fpls.2017.01531.; Gerasimova S.V., Hertig C., Korotkova A.M., Otto I., Hiekel S., Kochetov A.V., Kumlehn J., Khlestkina E.K. Converting hulled into naked barley through targeted knock-out of the Nud1 gene. In Vitro Cell. Dev. Biol.-Plant. 2018a;54(Suppl. 1):S101. DOI 10.1007/s11627-018-9923-0.; Gerasimova S.V., Korotkova A.M., Hertig C., Hiekel S., Hoffie R., Budhagatapalli N., Otto I., Hensel G., Shumny V.K., Kochetov A.V., Kumlehn J., Khlestkina E.K. Targeted genome modification in protoplasts of a highly regenerable Siberian barley cultivar using RNAguided Cas9 endonuclease. Vavilovskii Zhurnal Genetiki i Selektsii = Vavilov Journal of Genetics and Breeding. 2018b;22(8):1033-1039. DOI 10.18699/VJ18.447.; Ghazvini H., Tekauz A. Virulence diversity in the population of Bipolaris sorokiniana. Plant Dis. 2007;91(7):814-821.; Goddard R., Vos S., Steed A., Muhammed A., Thomas K., Griggs D., Ridout C., Nicholson P. Mapping of agronomic traits, disease resistance and malting quality in a wide cross of two-row barley cultivars. Plos One. 2019;14(7):e0219042. DOI 10.1371/journal.pone.0219042.; Hayes P., Szucs P. Disequilibrium and association in barley: thinking outside the glass. Proc. Natl. Acad. Sci. USA. 2006;103(49): 1838518386. DOI 10.1007/s00438-006.; Hisano H., Meints B., Moscou M.J., Cistue L., Echávarri B., Sato K., Hayes P.M. Selection of transformation-efficient barley genotypes based on TFA (transformation amenability) haplotype and higher resolution mapping of the TFA loci. Plant Cell Rep. 2017;36(4): 611-620. DOI 10.1007/s00299-017-2107-2.; Hyne V., Kearsey M.J. QTL analysis: further uses of ‘marker regression’ regression. Theor. Appl. Genet. 1995;91(3):471-476. DOI 10.1007/BF00222975.; International Barley Genome Sequencing Consortium; Mayer K.F.X., Waugh R., Brown J.W.S., Schulman A., Langridge P., Platzer M., Fincher G.B., Muehlbauer G.J., Sato K., Close T.J., Wise R.P., Stein N. A physical, genetic and functional sequence assembly of the barley genome. Nature. 2012;491(7426):711-716. DOI 10.1038/nature11543.; Jensen J. Estimation of recombination parameters between a quantitative trait locus (QTL) and two marker gene loci. Theor. Appl. Genet. 1989;78(5):613-618. DOI 10.1007/BF00262554.; Kearsey M.J., Farquhar A.G.L. QTL analysis in plants; where are we now? Heredity. 1998;80(2):137-142. DOI. 10.1038/sj.hdy.6885001.; Konieczny A., Ausubel F.M. A procedure for mapping Arabidopsis mutations using co-dominant ecotype-specific PCR-based markers. Plant J. 1993;4(2):403-410.; Korotkova A.M., Gerasimova S.V., Khlestkina E.K. Current achievements in modifying crop genes using CRISPR/Cas system. Vavilovskii Zhurnal Genetiki i Selektsii = Vavilov Journal of Genetics and Breeding. 2019;23(1):29-37. DOI 10.18699/vj19.458.; Kumar N., Galli M., Ordon J., Stuttmann J., Kogel K.H., Imani J. Further analysis of barley MORC1 using a highly efficient RNA-guided Cas9 gene-editing system. Plant Biotechnol. J. 2018;16(11):1892-1903. DOI 10.1111/pbi.12924.; Kumpatla S.P., Buyyarapu R., Abdurakhmonov I.Y., Mammadov J.A. Genomics-assisted plant breeding in the 21st century: technological advances and progress. In: Abdurakhmonov I. (Ed). Plant Breeding. 2012;131-183.; Künzel G., Korzun L., Meister A. Cytologically integrated physical restriction fragment length polymorphism maps for the barley genome based on translocation breakpoints. Genetics. 2000;154(1):397-412.; Lawrenson T., Shorinola O., Stacey N., Li C., Østergaard L., Patron N., Uauy C., Harwood W. Induction of targeted, heritable mutations in barley and brassica oleracea using RNA-guided Cas9 nuclease. Genome Biol. 2015;16(1):1-13. DOI 10.1186/s13059-015-0826-7.; Leng Y., Wang R., Ali S., Zhao M., Zhong S. Sources and genetics of spot blotch resistance to a new pathotype of Cochliobolus sativus in the USDA National small grains collection. Plant Dis. 2016; 100(10):1988-1093. DOI 10.1094/PDIS-02-16-0152-RE.; Lorenz A.J., Hamblin M.T., Jannink J.L. Performance of single nucleotide polymorphisms versus haplotypes for genome-wide association analysis in barley. PLoS One. 2010;5(11):e14079. DOI. 10.1371/journal.pone.0014079.; Luo M.C., Thomas C., You F.M., Hsiao J., Ouyang S., Buell C.R., Malandro M., McGuire P.E., Anderson O.D., Dvorak J. High-throughput fingerprinting of bacterial artificial chromosomes using the SNaPshot labeling kit and sizing of restriction fragments by capillary electrophoresis. Genomics. 2003;82(3):378-389. DOI 10.1016/S0888-7543(03)00128-9.; Madishetty K., Condamine P., Svensson J.T., Rodriguez E., Close T.J. An improved method to identify BAC clones using pooled overgos. Nucleic Acids Res. 2007;35(1):1-5. DOI 10.1093/nar/gkl920.; Mascher M., Gundlach H., Himmelbach A., Beier S., Twardziok S.O., Wicker T., Radchuk V., …, Hansson M., Zhang G., Braumann I., Spannagl M., Li C., Waugh R., Stein N. A chromosome conformation capture ordered sequence of the barley genome. Nature. 2017; 544(7651):427-433. DOI 10.1038/nature22043.; Mascher M., Muehlbauer G.J., Rokhsar D.S., Chapman J., Schmutz J., Barry K., Muñoz Amatriaín M., Close T.J., Wise R.P., Schulman A.H., Himmelbach A., Mayer K.F.X., Scholz U., Poland J.A., Stein1 N., Waugh R. Anchoring and ordering NGS contig assemblies by population sequencing (POPSEQ). Plant J. 2013;76(4): 718-727. DOI 10.1111/tpj.12319.; Olson M., Hood L., Cantor C., Botstein D. A common language for physical mapping of the human genome. Science. 1989;245(4925): 1434-1435. DOI 10.1126/science.2781285.; Pauli D., Muehlbauer G.J., Smith K.P., Cooper B., Hole D., Obert D.E., Ullrich S.E., Blake T.K. Association mapping of agronomic QTLs in US spring barley breeding germplasm. Plant Genome. 2014;7(3): 1-15. DOI 10.3835/plantgenome2013.11.0037.; Prieto P., Santos A.P., Moore G., Shaw P. Chromosomes associate premeiotically and in xylem vessel cells via their telomeres and centromeres in diploid rice (Oryza sativa). Chromosoma. 2004;112(6): 300-307. DOI 10.1007/s00412-004-0274-8.; Rasheed A., Hao Y., Xia X., Khan A., Xu Y., Varshney R.K., He Z. Crop breeding chips and genotyping platforms: progress, challenges, and perspectives. Mol. Plant. 2017;10(8):1047-1064. DOI 10.1016/j.molp.2017.06.008.; Rostoks N., Mudie S., Cardle L., Russell J., Ramsay L., Booth A., Svensson J.T., Wanamaker S.I., Walia H., Rodriguez E.M., Hedley P.E., Liu H., Morris J., Close T.J., Marshall D.F., Waugh R. Genome-wide SNP discovery and linkage analysis in barley based on genes responsive to abiotic stress. Mol. Genet. Genomics. 2005;274(5):515-527. DOI 10.1007/s00438-005-0046-z.; Schulte D., Close T.J., Graner A., Langridge P., Matsumoto T., Muehlbauer G., Sato K., Schulman A.H., Waugh R., Wise R.P., Stein N. Update on the international barley sequencing consortium – at the threshold of efficient access to the barley genome. Plant Physiol. 2009;149(1):142-147. DOI 10.1104/pp.108.128967.; Semagn K., Babu R., Hearne S., Olsen M. Single nucleotide polymorphism genotyping using kompetitive allele specific PCR (KASP): overview of the technology and its application in crop improvement. Mol. Breed. 2014;33(1):1-14.; Shavrukov Y.N. CAPS markers in plant biology. Vavilovskii Zhurnal Genetiki i Selektsii = Vavilov Journal of Genetics and Breeding. 2015;19(2):205-213. DOI 10.18699/VJ15.026.; Tautz D., Renz M. Simple sequences are ubiquitous repetitive components of eukaryotic genomes. Nucleic Acids Res. 1984;12(10):41274138. DOI 10.1093/nar/12.10.4127.; Wang D.G., Fan J.B., Siao C.J., Berno A., Young P., Sapolsky R., Ghandour G., Perkins N., Winchester E., Spencer J., Kruglyak L., Stein L., Hsie L., Topaloglou T., Hubbell E., Robinson E., Mittmann M., Morris M.S., Shen N., Kilburn D., Rioux J., Nusbaum C., Rozen S., Hudson T.J., Lipshutz R., Chee M., Lander E.S. Large-scale identification, mapping, and genotyping of single-nucleotide polymorphisms in the human genome. Science. 1998;280(5366):1077-1082. DOI 10.1126/science.280.5366.1077.; https://vavilov.elpub.ru/jour/article/view/2643

  17. 17
    Academic Journal

    Πηγή: Rossiyskiy Vestnik Perinatologii i Pediatrii (Russian Bulletin of Perinatology and Pediatrics); Том 65, № 2 (2020); 104-107 ; Российский вестник перинатологии и педиатрии; Том 65, № 2 (2020); 104-107 ; 2500-2228 ; 1027-4065 ; 10.21508/1027-4065-2020-65-2

    Περιγραφή αρχείου: application/pdf

    Relation: https://www.ped-perinatology.ru/jour/article/view/1117/923; ORPHANET. X-linked adrenoleukodystrophy. https:// www.orpha.net/consor/cgi-bin/OC_Exp.php?Expert=43 (accessed on 03 Dec 2019.); Новиков П.В., Михайлова С.В., Захарова Е.Ю., Воинова В.Ю. Федеральные клинические рекомендации по диагностике и лечению Х-сцепленной адренолейкодистрофии. М., 2013. https://med-gen.ru/docs/adrenoleikodistrofiya.pdf. [Novikov P.V., Mikhajlova S.V., Zakharova E.Yu., Voinova V.Yu. Federal clinical guidelines for the diagnosis and treatment of X-linked adrenoleukodystrophy. Moscow, 2013. (in Russ.)]; Воинова В.Ю., Юров И.Ю., Ворсанова С.Г., Юров Ю.Б. Умственная отсталость и хромосома Х. М.: Издательский дом Академии Естествознания, 2016; 219. [Voinova V.Yu., Yurov I.Yu., Vorsanova S.G., Yurov Yu.B. Mental retardation and chromosome X. Moscow: Izdatel’skii dom Аkademii Estestvoznaniya, 2016; 219. (in Russ.)]; Peters C., Charnas L.R., Tan Y., Ziegler R.S., Shapiro E.G., DeFor T. et al. Cerebral X-linked adrenoleukodystrophy: the international hematopoietic cell transplantation experience from 1982 to 1999. Blood 2004; 104: 881–888.; Lund T.C. Hematopoietic stem cell transplant for lysosomal storage diseases. Pediatr Endocrinol Rev 2013; 11 (Suppl 1): 91–98.; Lentiviral Gene Therapy for X-ALD. Phase I/II clinical trial of gene therapy for treating X-linked adrenoleukodystrophy using a high-safety, high-efficiency, self-inactivating lentiviral vector TYF-ABCD1 to functionally correct the defective gene. Available online: https://clinicaltrials.gov/ct2/show/ NCT03727555 (accessed on 09 Jan 2020); Cartier N., Hacein-Bey-Abina S., Bartholomae C.C., Bougnères P., Schmidt M., Kalle C.V. et al. Lentiviral hematopoietic cell gene therapy for X-linked adrenoleukodystrophy. Methods Enzymol 2012; 507: 187–198. DOI:10.1016/B9780-12-386509-0.00010-7.; Kawaguchi K., Morita M. ABC Transporter Subfamily D: Distinct Differences in Behavior between ABCD1-3 and ABCD4 in Subcellular Localization, Function, and Human Disease. Biomed Res Int 2016; 2016: 6786245. DOI:10.1155/2016/6786245; Gugliani R., Vieira T.A., Carvalho C.G., Muñoz-Rojas M.V., Semyachkina A.N., Voinova V.Yu. et al. Immune tolerance induction for laronidase treatment in mucopolysaccharidosis I. Mol Genet Metab Rep 2017; 10: 61–66. DOI:10.1016/j. ymgmr.2017.01.004; Ou L., DeKelver R.C., Rohde M., Tom S., Radeke R., St Martin S.J. et al. ZFN-Mediated In Vivo Genome Editing Corrects Murine Hurler Syndrome. Mol Ther 2019; 27 (1): 178–187. DOI:10.1016/j.ymthe.2018.10.018; Gomez-Ospina N., Scharenberg S.G., Mostrel N., Bak R.O., Mantri S. et al. Human genome edited hematopoietic stem cells phenotypically correct Mucopolysaccharidosis type I. Nat Commun 2019; 10 (1): 4045. DOI:10.1038/s41467-01911962-8; Schuh R.S., Poletto É., Pasqualim G., Tavares A.M.V., Meyer F.S., Gonzalez E.A. et al. In vivo genome editing of mucopolysaccharidosis I mice using the CRISPR/Cas9 system. J Control Release 2018; 288: 23–33. DOI:10.1016/j.jconrel.2018.08.031; Harmatz P., Muenzer J., Burton B.K. Update on phase 1/2 clinical trials for MPS I and MPS II using ZFN-mediated in vivo genome editing. Mol Genet Metab 2018; 123 (2): S59–S60. DOI:10.1016/j.ymgme.2017.12.143; Ascending Dose Study of Genome Editing by the Zinc Finger Nuclease (ZFN) Therapeutic SB-318 in Subjects With MPS I. Available online: https://clinicaltrials.gov/ct2/show/ NCT02702115 (accessed on 09 Jan 2020).; Ascending Dose Study of Genome Editing by the Zinc Finger Nuclease (ZFN) Therapeutic SB-913 in Subjects With MPS II. Available online: https://clinicaltrials.gov/ct2/show/ NCT03041324 (accessed on 09 Jan 2020).; Pelizzo G., Avanzini M.A., Lenta E. Mantelli M., Croce S., Cate- nacci L. et al. Allogeneic mesenchymal stromal cells: Novel therapeutic option for mutated FLNA-associated respiratory failure in the pediatric setting. Pediatr Pulmonol 2020; 55 (1): 190–197. DOI:10.1002/ppul.24497; Anzalone A.V., Randolph P.B., Davis J.R., Sousa A.A., Koblan L.W., Levy J.M. et al. Search-and-replace genome editing without double-strand breaks or donor DNA. Nature 20

  18. 18
    Academic Journal

    Συγγραφείς: Соловьев, A.A.

    Πηγή: Биотехнология в растениеводстве, животноводстве и сельскохозяйственной микробиологии. :13-13

  19. 19
    Academic Journal

    Συνεισφορές: Russian Federation government, Правительство Российской Федерации

    Πηγή: Agricultural Science Euro-North-East; Том 20, № 1 (2019); 5-19 ; Аграрная наука Евро-Северо-Востока; Том 20, № 1 (2019); 5-19 ; 2500-1396 ; 2072-9081

    Περιγραφή αρχείου: application/pdf

    Relation: https://www.agronauka-sv.ru/jour/article/view/293/292; Борлоуг Н.Э. "Зеленая революция": вчера, сегодня и завтра // Экология и жизнь. 2001. №4. Т.1. Режим доступа: http://www.ecolife.ru/jornal/econ/2001-4-1.shtml.; Brown L. The great food crisis of 2011 // Foreign Policy. 2011. Vol. 10. рp. 1-5. Available at: http://www.earthpolicy.org/plan_b_updates/2011/update90.; FAO World Soil Resources Report 90. Land resource potential and constraints at regional and country levels. Rome, 2000. 122 p. URL: ftp://ftp.fao.org/agl/agll/docs/wsr.pdf.; Tilman D., Balzer C., Hill J., Befort B.L. Global food demand and the sustainable intensification of agriculture // PNAS. 2011. Vol. 108. no. 50. pp. 20260-20264. DOI:10.1073/pnas.1116437108.; World agricultural production / United States Department of Agriculture, Foreign Agricultural Service, Circular Series: December 2018. URL: https://apps.fas.usda.gov/psdonline/circulars/production.pdf.; FAOSTAT. URL: http://www.fao.org/faostat/en/#data/QC (accessed: 25.01.2019).; GM Approval Database. URL: http://www.isaaa.org/gmapprovaldatabase/default.asp. (accessed: 25.01.2019).; Mayer K. F. X., Waugh R., Langridge P., Close T. J., Wise R. P., Graner A., Matsumoto T., Sato K., Schulman A., Muehlbauer G. J., Stein N., Ariyadasa R., Schulte D., Poursarebani N., Zhou R., Steuernagel B., Mascher M., Scholz U., Shi B., Madishetty K., Svensson J. T., Bhat P., Moscou M., Resnik J., Hedley P., Liu H., Morris J., Frenkel Z., Korol A., Bergès H., Taudien S., Felder M., Groth M., Platzer M., Himmelbach A., Lonardi S., Duma D., Alpert M., Cordero F., Beccuti M., Ciardo G., Ma Y., Wanamaker S., Cattonaro F., Vendramin V., Scalabrin S., Radovic S., Wing R., Morgante M., Nussbaumer T., Gundlach H., Martis M., Poland J., Spannagl M., Pfeifer M., Moisy C., Tanskanen J., Zuccolo A., Russell J., Druka A., Marshall D., Bayer M., Swarbreck D., Sampath D., Ayling S., M. Febrer, Caccamo M., Tanaka T., Schmutzer T., Brown J. W. S., Fincher G. B. A physical, genetic and functional sequence assembly of the barley genome // Nature. 2012. Vol. 491. no. 7426. рр. 711-716. DOI:10.1038/nature11543.; Mascher M., Gundlach H., Himmelbach A., Beier S., Twardziok S.O., Wicker T., Radchuk V., Dockter C., Hedley P.E., Russell J., Bayer M., Ramsay L., Liu H., Haberer G., Zhang X.Q., Zhang Q., Barrero R.A., Li L., Taudien S., Groth M., Felder M., Hastie A., Staаkova H., Vrana J., Chan S., Amatrian M.M., Ounit R, Wanamaker S., Bolser D., Colmsee C., Schmutzer T., Aliyeva-Schnorr L., Grasso S., Tanskanen J., Chailyan A., Sampath D., Heavens D., Clissold L., Cao S., Chapman B., Dai F., Han Y., Li H., Li X., Lin C., McCooke J.K., Tan C., Wang P., Wang S., Yin S., Zhou G., Poland J.A., Bellgard M.I., Borisjuk L., Houben A., Doleael J., Ayling S., Lonardi S., Kersey P., Langridge P., Muehlbauer G.J., Clark M.D., Caccamo M., Schulman A.H., Mayer K.F.X., Platzer M., Close T.J., Scholz U., Hansson M., Zhang G., Braumann I., Spannagl M., Li C., Waugh R., Stein N. A chromosome conformation capture ordered sequence of the barley genome // Nature. 2017. Vol. 544. no. 7651. рр. 427-433. DOI:10.1038/nature22043.; Mrízová K., Holasková E., Öz M. T., Jiskrová E., Frébort I., Galuszka P. Transgenic barley: A prospective tool for biotechnology and agriculture // Biotechnology advances. 2014. Vol. 32. no. 1. рр. 137-157. DOI:10.1016/j.biotechadv.2013.09.011.; Ma S., Gong Q., Bohnert H.J. Dissecting salt stress pathways // Journal of experimental botany. 2006. Vol. 57. no. 5. рр. 1097-1107. DOI:10.1093/jxb/erj098.; Vyroubalová Š., Šmehilová M., Galuszka P., Ohnoutková L. Genetic transformation of barley: limiting factors // Biologia Plantarum. 2011. Vol. 55. no. 2. рр. 213-224. DOI:10.1007/s10535-011-0032-8.; Колодяжная Я.С., Куцоконь Н.К., Левенко Б.А., Сютикова О.С., Рахметов Д.Б., Кочетов А.В. Трансгенные растения, толерантные к абиотическим стрессам // Цитология и генетика. 2009. Т. 43. № 2. С. 72-93. Режим доступа: http://dspace.nbuv.gov.ua/bitstream/handle/123456789/66636/10-Kolodyazhna.pdf?sequence=1.; Reguera M., Peleg Z., Blumwald E. Targeting metabolic pathways for genetic engineering abiotic stress-tolerance in crops // Biochimica et Biophysica Acta (BBA)-Gene Regulatory Mechanisms. 2012. Vol. 1819. no. 2. рр. 186-194. DOI:10.1016/j.bbagrm.2011.08.005.; Баранова Е.Н., Серенко Е.К., Гулевич А.А. Генно-инженерный подход к повышению устойчивости растений к засолению: проблемы и перспективы: в кн. Проблемы агробиотехнологии / под ред. П.Н. Харченко. М.: Росинформагротех, 2012. С. 49-68.; Delhaize E., Ryan P.R., Hebb D.M., Yamamoto Y., Sasaki T., Matsumoto H. Engineering high level aluminium tolerance in barley with the ALMT1 gene // Proc. Natl. Acad. Sci. USA. 2004. Vol. 101. no. 42. рр. 15249-15254. DOI:10.1073/pnas.0406258101; Delhaize E., Taylor P., Hocking P. J., Simpson R. J., Ryan P. R., Richardson A. E. Transgenic barley (Hordeum vulgare L.) expressing the wheat aluminium resistance gene (TaALMT1) shows enhanced phosphorus nutrition and grain production when grown on an acid soil // Plant biotechnology journal. 2009. Vol. 7. no. 5. рр. 391-400. DOI:10.1111/j.1467-7652.2009.00403.x; Gruber B.D., Delhaize E., Richardson A.E., Roessner U., James R. A., Howitt S.M., Ryan P.R. Characterisation of HvALMT1 function in transgenic barley plants // Functional Plant Biology. 2011. Vol. 38. no. 2. рр. 163-175. DOI:10.1071/FP10140.; Zhou G., Delhaize E., Zhou M., Ryan P.R. The barley MATE gene, HvAACT1, increases citrate efflux and Al3+ tolerance when expressed in wheat and barley // Annals of botany. 2013. Vol. 112. no. 3. рр. 603-612. DOI:10.1093/aob/mct135.; Adem G. D., Roy S. J., Plett D. C., Zhou M., Bowman J. P., Shabala, S. Expressing AtNHX1 in barley (Hordeum vulgare L.) does not improve plant performance under saline conditions // Plant growth regulation. 2015. Vol. 77. no. 3. рр. 289-297. DOI:10.1007/s10725-015-0063-9.; Чень Т., Михайлова Ю.В., Шишова М.Ф. Молекулярно-филогенетический анализ субъединиц H+- атфазы тонопласта // Экологическая генетика. 2015. Т. 13. № 4. С. 76-90. Режим доступа: https://cyberleninka.ru/article/n/molekulyarno-filogeneticheskiy-analiz-subedinits-h-atfazy-tonoplasta.; Hong-Hermesdorf A., Brüx A., Grüber A., Grüber G., Shumacher K. A WNK kinase binds and phosphorylates V-ATPase subunit C // FEBS Letters. 2006. Vol. 580. рр. 932-939. DOI:10.1016/j.febslet.2006.01.018.; Adem G. D., Roy S. J., Huang Y., Chen, Z. H., Wang, F., Zhou M., Bowman J. P., Holford P., Shabala S. Expressing Arabidopsis thaliana V-ATPase subunit C in barley (Hordeum vulgare) improves plant performance under saline condition by enabling better osmotic adjustment // Functional Plant Biology. 2017. Vol. 44. no. 12. рр. 1147-1159. DOI:10.1071/FP17133.; Rodriguez-Rosales M.P., Galvez F.J., Huertas R., Aranda M.N., Baghour M., Cagnac O., Venema K. Plant NHX cation/proton antiporters // Plant Signal. Behav. 2009. Vol. 4. рр. 265-276. DOI:10.4161/psb.4.4.7919.; Roy S.J., Huang W., Wang X.J., Evrard A., Schmöckel S.M., Zafar Z.U., Tester M. A novel protein kinase involved in Na+ exclusion revealed from positional cloning // Plant, cell & environment. 2013. Vol. 36. no. 3. рр. 553-568. DOI:10.1111/j.1365-3040.2012.02595.x.; Schilling R. K., Marschner P., Shavrukov Y., Berger B., Tester M., Roy S. J., Plett D. C. Expression of the Arabidopsis vacuolar H+‐pyrophosphatase gene (AVP1) improves the shoot biomass of transgenic barley and increases grain yield in a saline field // Plant biotechnology journal. 2014. Vol. 12. no. 3. рр. 378-386. DOI:10.1111/pbi.12145.; Rae A. L., Jarmey J. M., Mudge S. R., Smith F. W. Over-expression of a high-affinity phosphate transporter in transgenic barley plants does not enhance phosphate uptake rates // Functional Plant Biology. 2004. Vol. 31. no. 2. рр. 141-148. DOI:10.1071/FP03159.; Pospíšilová H., Jiskrová E., Vojta P., Mrízová K., Kokáš F., Čudejková M. M., Bergougnoux V., Plíhal O., Klimešová J., Novák O, Dzurova L., Frébort I., Galuszka P. Transgenic barley overexpressing a cytokinin dehydrogenase gene shows greater tolerance to drought stress // New biotechnology. 2016. Vol. 33. no. 5. рр. 692-705. DOI:10.1016/j.nbt.2015.12.005.; Zalabák D., Pospíšilová H., Šmehilová M., Mrízová K., Frébort I., Galuszka P. Genetic engineering of cytokinin metabolism: prospective way to improve agricultural traits of crop plants // Biotechnology advances. 2013. Vol. 31. no. 1. рр. 97-117. DOI:10.1016/j.biotechadv.2011.12.003.; Zalewski W., Galuszka P., Gasparis S., Orczyk W., Nadolska-Orczyk A. Silencing of the HvCKX1 gene decreases the cytokinin oxidase/dehydrogenase level in barley and leads to higher plant productivity // Journal of Experimental Botany. 2010. Vol. 61. no. 6. рр. 1839-1851. DOI:10.1093/jxb/erq052.; Polle A. Dissecting the superoxide dismutase -ascorbate-glutathione-pathway in chloroplasts by metabolic modeling. Computer simulations as a step towards flux analysis // Plant physiology. 2001. Vol. 126. no. 1. рр. 445-462. DOI:10.1104/Р.126.1.445.; Kreslavski V.D., Allakhverdiev S.I., Los D.A., Kuznetsov V.V. Signaling role of reactive oxygen species in plants under stress // Russian Journal of Plant Physiology. 2012. Vol. 59. no. 2. рр. 141-154. DOI:10.1134/S1021443712020057.; Chen J., Liu C., Shi B., Chai Y., Han N., Zhu M., Bian H. Overexpression of HvHGGT Enhances Tocotrienol Levels and Antioxidant Activity in Barley // Journal of Agricultural and Food Chemistry. 2017. Vol. 65. no. 25. рр. 5181-5187. DOI:10.1021/acs.jafc.7b00439.; Arnér E. S., Holmgren A. Physiological functions of thioredoxin and thioredoxin reductase // Eur J Biochem. 2000. Vol. 267. no. 20. рр. 6102-6109. DOI:10.1046/j.1432-1327.2000.01701.x.; Li Q., Niu H.B., Yin J., Niu J. S., Ren J.P., Li Y., Wang X. Transgenic barley with overexpressed PTrx in-creases aluminum resistance in roots during germination // Journal of Zhejiang University-Science B. 2010. Vol. 11. no. 11. рр. 862-870. DOI:10.1631/jzus.B1000048.; Kim Y. B., Garbisu C., Pickering I. J., Prince R. C., George G. N., Cho M. J., Wong J. H., Buchanan B. B. Thioredoxin h overexpressed in barley seeds enhances selenite resistance and uptake during germination and early seedling development // Planta. 2003. Vol. 218. рр. 186-191. DOI:10.1007/s00425-003-1102-8.; Van Breusegem F., Slooten L., Stassart J., Moens T., Botterman J., Van Montagu M., Inze D. Overproduction of Arabidopsis thaliana FeSOD confers oxidative stress tolerance to transgenic maize // Plant Cell Physiol. 1999. Vol. 40. рр. 515-523. DOI:10.1093/oxfordjournals.pcp.a029572.; Bhoomika K., Pyngrope S., Dubey R. S. Differential responses of antioxidant enzymes to aluminum toxicity in two rice (Oryza sativa L.) cultivars with marked presence and elevated activity of Fe SOD and enhanced activities of Mn SOD and catalase in aluminum tolerant cultivar // Plant Growth Regulation. 2013. Vol. 71. рр. 235-252. DOI:10.1007/s10725-013-9824-5.; Cartes P., McManus M., Wulff-Zottele C., Leung S., Gutiйrrez-Moraga A., Mora M. L. Differential super-oxide dismutase expression in ryegrass cultivars in response to short term aluminium stress // Plant Soil. 2012. Vol. 350. no. 1-2. рр. 353-363. DOI:10.1007/s11104-011-0919-3.; Бакулина А.В., Широких И.Г., Лундовских И.А. Подходы к агробактериальной трансформации ячменя отечественных сортов // ТРАНСГЕННЫЕ РАСТЕНИЯ: технологии создания, биологические свойства, применение, биобезопасность: матер. докл. V Всеросс. симпозиума. М., 1-4 декабря 2014. С. 33-36.; Nagy B., Majer P., Mihály R., Pauk, J., Horváth, G. V. Stress tolerance of transgenic barley accumulating the alfalfa aldose reductase in the cytoplasm and the chloroplast // Phytochemistry. 2016. Vol. 129. рp. 14-23. DOI:10.1016/j.phytochem.2016.07.007.; Éva C., Solti Á., Oszvald M., Tömösközi-Farkas R., Nagy B., Horváth G. V., Tamás L. Improved reactive aldehyde, salt and cadmium tolerance of transgenic barley due to the expression of aldo-keto reductase genes // Acta physiologiae plantarum. 2016. Vol. 38. no. 4. рp. 38-99. DOI:10.1007/s11738-016-2118-6.; Hirayama T., Shinozaki K. Research on plant abiotic stress responses in the post‐genome era: Past, present and future // The Plant Journal. 2010. Vol. 61. no. 6. рp. 1041-1052. DOI:10.1111/j.1365-313X.2010.04124.x.; McGrann G.R., Steed A., Burt C., Goddard R., Lachaux C., Bansal A., Corbitt M., Gorniak K., Nicholson P., Brown J. K. M. Contribution of the drought tolerance‐related Stress‐responsive NAC1 transcription factor to resistance of barley to Ramularia leaf spot // Molecular plant pathology. 2015. Vol. 16. no. 2. рp. 201-209. DOI:10.1111/mpp.12173.; Al Abdallat A. M., Ayad J. Y., Elenein J. A., Al Ajlouni Z., Harwood W. A. Overexpression of the tra n-scription factor HvSNAC1 improves drought tolerance in barley (Hordeum vulgare L.) // Molecular breeding. 2014. Vol. 33. no. 2. рp. 401-414. DOI:10.1007/s11032-013-9958-1.; Soltész A., Smedley M., Vashegyi I., Galiba G., Harwood W., Vágújfalvi A. Transgenic barley lines prove the involvement of TaCBF14 and TaCBF15 in the cold acclimation process and in frost tolerance // Journal of experimental botany. 2013. Vol. 64. no. 7. рp. 1849-1862. DOI:10.1093/jxb/ert050.; Soltész A., Vágújfalvi A., Rizza F., Kerepesi I., Galiba G., Cattivelli L., Coraggio I., Crosatti C. The rice Osmyb4 gene enhances tolerance to frost and improves germination under unfavourable conditions in transgenic barley plants // Journal of applied genetics. 2012. Vol. 53. no. 2. рp. 133-143. DOI:10.1007/s13353-011-0081-x.; Morran S., Eini O., Pyvovarenko T., Parent B., Singh R., Ismagul A., Eliby S., Shirley N., Langridge, Lopato S. Improvement of stress tolerance of wheat and barley by modulation of expression of DREB/CBF factors // Plant biotechnology journal. 2011. Vol. 9. no. 2. рp. 230-249. DOI:10.1111/j.1467-7652.2010.00547.x.; Zhao T., Liang D., Wang P., Liu J., Ma F. Genome-wide analysis and expression profiling of the DREB transcription factor gene family in Malus under abiotic stress // Molecular genetics and genomics. 2012. Vol. 287. no. 5. рp. 423-436. DOI:10.1007/s00438-012-0687-7.; Kovalchuk N., Jia W., Eini O., Morran S., Pyvovarenko T., Fletcher S., Bazanova N., Harris J., Beck-Oldach K., Shavrukov Y., Langridge P., Lopato S. Optimization of TaDREB3 gene expression in transgenic barley using cold‐inducible promoters // Plant Biotechnology Journal. 2013. Vol. 11. no. 6. рp. 659-670. DOI:10.1111/pbi.12056.; Koroban N.V., Kudryavtseva A.V., Krasnov G.S., Sadritdinova A.F., Fedorova M.S., Snezhkina A.V., Bolsheva N.L., Muravenko O.V., Dmitriev A.A., Melnikova N.V. The role of microRNA in abiotic stress response in plants Molecular Biology. 2016. Vol. 50. no. 3. рp. 337-343. DOI:10.7868/S0026898416020105.; Jones-Rhoades M.W., Bartel D.P., Bartel B. MicroRNAs and their regulatory roles in plants // Annu Rev Plant Biol. 2006. Vol. 57. рp. 19-53. DOI:10.1146/annurev.arplant.57.032905.105218.; Pacak A., Kruszka K., Swida-Barteczka A., Karlowski W., Jarmolowski A., Szweykowska-Kulinska Z. The microRNA-guided regulation of tillering in barley // BioTechnologia Journal of Biotechnology Computational Biology and Bionanotechnology. 2015. Vol. 96. no. 1. P. 42.; Budak H., Kantar M., Bulut R., Akpinar B. A. Stress responsive miRNAs and isomiRs in cereals // Plant Sci. 2015. Vol. 235. рp. 1-13. URL: http://agro.icm.edu.pl/agro/element/bwmeta1.element.agro-33b7210c-9ecb-4ffc-94fe-f1a0e9421185/c/BTA_Art_25769-10_39-153.pdf.; Ferdous J., Whitford R., Nguyen M., Brien C., Langridge P., Tricker, P. J. Drought-inducible expression of Hv-miR827 enhances drought tolerance in transgenic barley // Functional & integrative genomics. 2017. Vol. 17. no. 2-3. рp. 279-292. DOI:10.1007/s10142-016-0526-8.; Bai B., Bian H., Zeng Z., Hou N., Shi B., Wang J., Han N. miR393-mediated auxin signaling regulation is involved in root elongation inhibition in response to toxic aluminum stress in barley // Plant and Cell Physiology. 2017. Vol. 58. no. 3. рp. 426-439. DOI:10.1093/pcp/pcw211.; Zhou H., Hussain S.S., Hackenberg M., Bazanova N., Eini O., Li J., Gustafson P., Shi B. Identification and characterisation of a previously unknown drought tolerance‐associated micro RNA in barley. The Plant Journal, 2018. Vol. 95. рp. 138-149. DOI:10.1111/tpj.13938.; Дейнеко Е.В. Генетическая инженерия растений // Вавиловский журнал генетики и селекции. 2014. Т. 18. №1. С. 125-137. Режим доступа: https://vavilov.elpub.ru/index.php/jour/article/download/233/235.; Рябушкина Н.А., Галиакпаров Н.Н. Молчание генов в растениях. Как это явление можно использовать в биоинженерии // Биотехнология. Теория и практика. 2009. №1. С. 15-31.; Lee H., Rustgi S., Kumar N., Burke I., Yenish J. P., Gill K. S., von Wettstein D., Ullrich S. E. Single nucleotide mutation in the barley acetohydroxy acid synthase (AHAS) gene confers resistance to imidazolinone herb i-cides // Proc. Natl. Acad. Sci. U.S.A. 2011. Vol. 108. рp. 8909-8913. DOI:10.1073/pnas.1105612108.; Horvath M., Steinbiss H.H., Reiss B. Gene Targeting Without DSB Induction Is Inefficient in Barley// Frontiers in plant science. 2017. Vol. 7: 1973. DOI:10.3389/fpls.2016.01973; Злобин Н.Е., Терновой В.В., Гребенкина Н.А., Таранов В.В. Сделать сложное проще: современный инструментарий для редактирования генома растений // Вавиловский журнал генетики и селекции. 2017. Т. 21. № 1. С. 104-111. DOI:10.18699/VJ17.228.; Wendt T., Holm P. B., Starker C. G., Christian M., Voytas D. F., Brinch-Pedersen H., Holme I. B. TAL effector nucleases induce mutations at a pre-selected location in the genome of primary barley transformants // Plant molecular biology. 2013. Vol. 83. no. 3. рp. 279-285. DOI:10.1007/s11103-013-0078-4.; Gurushidze M., Hensel G., Hiekel S., Schedel S., Valkov V., Kumlehn J. True-breeding targeted gene knock-out in barley using designer TALE-nuclease in haploid cells // PLoS One. 2014. Vol. 9. no. 2. 3. e92046. DOI:10.1371/journal.pone.0092046.; Budhagatapalli N., Rutten T., Gurushidze M., Kumlehn J., Hensel G. Targeted modification of gene function exploiting homology-directed repair of TALEN-mediated double-strand breaks in barley // Genes, Genomes, Genetics. 2015. V. 5. no. 9. рp. 1857-1863. DOI:10.1534/g3.115.018762.; Watanabe K., Breier U., Hensel G., Kumlehn J., Schubert I., Reiss B. Stable gene replacement in barley by targeted double-strand break induction // Journal of experimental botany. 2015. Vol. 67. no. 5. рp. 1433-1445. DOI:10.1093/jxb/erv537.; Короткова А. М., Герасимова С. В., Шумный В. К., Хлесткина Е. К. Гены сельскохозяйственных растений, модифицированные с помощью системы CRISPR/Cas // Вавиловский журнал генетики и селекции. 2017. Т. 21. № 2. С. 250-258. DOI:10.18699/VJ17.244.; Власов В.В., Медведев С.П., Закиян С.М. «Редакторы» геномов. От цинковых пальцев до CRISPR// Наука из первых рук. 2014. Т. 56. № 2. С. 44-53. Режим доступа: https://cyberleninka.ru/article/n/redaktory-genomov-ot-tsinkovyh-paltsev-do-crispr.; Lawrenson T., Shorinola O., Stacey N., Li C., Оstergaard L., Patron N., Uauy C., Harwood W. Induction of targeted, heritable mutations in barley and Brassica oleracea using RNA-guided Cas9 nuclease // Genome biology. 2015. Vol. 16. no. 1. рp. 258. DOI:10.1186/s13059-015-0826-7.; Полонский В.И., Сумина А.В. Содержание β-глюканов в зерне как перспективный признак при селекции ячменя на пищевое использование (обзор иностранной литературы)// Сельскохозяйственная биология. 2013. №5. С. 30-43. Режим доступа: https://cyberleninka.ru/article/n/soderzhanie-glyukanov-v-zerne-kak-perspektivnyy-priznak-pri-selektsii-yachmenya-na-pischevoe-ispolzovanie-obzor-inostrannoy-literatury.; Kapusi E., Corcuera-Gómez M., Melnik S., Stoger E. Heritable genomic fragment deletions and small indels in the putative ENGase gene induced by CRISPR/Cas9 in barley // Frontiers in plant science. 2017. Vol. 8. Art. 540. рp.1-11. DOI:10.3389/fpls.2017.00540.; Holme I.B., Dionisio G., Madsen C.K., Brinch-Pedersen H. Barley HvPAPhy_a as transgene provides high and stable phytase activities in mature barley straw and in grains // Plant Biotechnol J. 2017. Vol. 15. рp. 415-422. DOI:10.1111/pbi.12636.; Holme I.B., Wendt T., Gil-Humanes J., Deleuran L. C., Starker C. G., Voytas D. F., Brinch-Pedersen H. Evaluation of the mature grain phytase candidate HvPAPhy_a gene in barley (Hordeum vulgare L.) using CRISPR/Cas9 and TALENs // Plant Molecular Biology. 2017. Vol. 95. no. 1-2. рp. 111-121. DOI:10.1007/s11103-017-0640-6.; Gerasimova S.V., Korotkova A. M., Hertig C., Hiekel S., Hoffie R., Budhagatapalli N., Otto I., Hensel G., Shumny V.K., Kochetov A.V., Kumlehn J., Khlestkina E.K. Targeted genome modification in protoplasts of a highly regenerable sibirian barley cultivar using RNA-guided Cas9 endonuclease // Vavilov Journal of Genetics and Breeding. 2018. Vol. 22(8). рp. 1033-1039. DOI:10.18699/VJ18.447.; Kis A., Hamar É., Tholt G., Bán R., Havelda Z. Creating highly efficient resistance against Wheat dwarf virus in barley by employing CRISPR/Cas9 system. Plant biotechnology journal. 2019. рp. 1-4. DOI:10.1111/pbi.13077.; Gasparis S., Kała M., Przyborowski M., Łyżnik L. A., Orczyk W., Nadolska-Orczyk A. A simple and efficient CRISPR/Cas9 platform for induction of single and multiple, heritable mutations in barley (Hordeum vulgare L.) // Plant methods. 2018. Vol. 14(1). P. 111. DOI:10.1186/s13007-018-0382-8.

  20. 20
    Academic Journal

    Συγγραφείς: Firstova V.V., Shemyakin I.G., Dyatlov I.A.

    Συνεισφορές: The work was carried out in the framework of Agreement No. 075-15-2019-1671 of October 31, 2019 with the Ministry of Education and Science of Russia (task 2.8. Development of recombinant human monoclonal antibodies for the treatment of diseases caused by pathogenic microorganisms, bacterial and plant toxins)., Работа выполнена в рамках Соглашения № 075-15-2019-1671 от 31 октября 2019 г. с Минобрнауки России (задача 2.8 Разработка рекомбинантных человеческих моноклональных антител для лечения заболеваний, вызванных патогенными микроорганизмами, бактериальными и растительными токсинами).

    Πηγή: Annals of the Russian academy of medical sciences; Vol 74, No 6 (2019); 378-387 ; Вестник Российской академии медицинских наук; Vol 74, No 6 (2019); 378-387 ; 2414-3545 ; 0869-6047 ; 10.15690/vramn746

    Περιγραφή αρχείου: application/pdf