-
1Academic Journal
Συγγραφείς: O. S. Glotov, A. N. Chernov, P. A. Suchko, Yu. A. Eismont, L. A. Mayorova, О. С. Глотов, А. Н. Чернов, П. A. Cучко, Ю. А. Эйсмонт, Л. А. Майорова
Πηγή: Rossiyskiy Vestnik Perinatologii i Pediatrii (Russian Bulletin of Perinatology and Pediatrics); Том 69, № 2 (2024); 26-33 ; Российский вестник перинатологии и педиатрии; Том 69, № 2 (2024); 26-33 ; 2500-2228 ; 1027-4065
Θεματικοί όροι: генетические ассоциации, autism, autism spectrum disorders, symptoms, etiological factors, genes, genetic associations, аутизм, расстройства аутистического спектра, симптомы, этиологические факторы, гены
Περιγραφή αρχείου: application/pdf
Relation: https://www.ped-perinatology.ru/jour/article/view/1967/1474; Jasoliya M., Gu J., AlOlaby R.R., Durbin-Johnson B., Chedin F., Tassone F. Profiling Genome-Wide DNA Methylation in Children with Autism Spectrum Disorder and in Children with Fragile X Syndrome. Genes (Basel) 2022; 13(10): 1795. DOI:10.3390/genes13101795; Autism spectrum disorders. World Health Organization. http://www.who.int/news-room/fact-sheets/detail/autism-spectrum-disorders / Ссылка активна на 6.02.2024.; Maenner M.J., Shaw K.A., Baio J. Prevalence of autism spectrum disorder among children aged 8 years — autism and developmental disabilities monitoring network, 11 sites, united states, 2016. MMWR Surveill Summ 2020; 69: 1. DOI:10.15585/mmwr.ss6802a1; Living With Autism. https://www.easterseals.com/in-sw/explore-resources/living-with-autism / Ссылка активна на 03.10.2023.; Cortese S., Solmi M., Michelini G., Bellato A., Blanner C., Canozzi A. et al. Candidate diagnostic biomarkers for neurodevelopmental disorders in children and adolescents: A systematic review. World Psychiatry 2023; 22: 129–149. DOI:10.1002/wps.21037; Doernberg E., Hollander E. Neurodevelopmental disorders (ASD and ADHD): DSM-5, ICD-10, and ICD-11. CNS Spectrums 2016; 21(4): 295–299. DOI:10.1017/S1092852916000262; Treffert D.A. The savant syndrome: an extraordinary condition. A synopsis: past, present, future. Philosophical Transactions of The Royal Society B. Biol Scie 2009; 364(1522): 1351–1357. DOI:10.1098/rstb.2008.0326; Lai M.C., Lombardo M.V., Baron-Cohen S. Autism. Lancet 2014; 383(9920): 896–910. DOI:10.1016/S0140–6736(13)61539–1; Kaufmann W.E., Kidd S. A., Andrews H.F., Budimirovic D.B., Esler A., Haas-Givler B. et al. Autism Spectrum Disorder in Fragile X Syndrome: Cooccurring Conditions and Current Treatment. Pediatrics 2017; 139(Suppl 3): S194–S206. DOI:10.1542/peds.2016–1159F; Buiting K., Williams C., Horsthemke B. Angelman syndrome — insights into a rare neurogenetic disorder. Nat Rev Neurol 2016; 12(10): 584–593. DOI:10.1038/nrneurol.2016.133; Horigane S.-I., Ozawa Y., Zhang J., Todoroki H., Miao P., Haijima A. et al. A mouse model of Timothy syndrome exhibits altered social competitive dominance and inhibitory neuron development. FEBS Open Bio 2020; 10(8): 1436–1446. DOI:10.1002/2211–5463.12924; Spinazzi N.A., Velasco A.B., Wodecki D.J., Patel L. Autism Spectrum Disorder in Down Syndrome: Experiences from Caregivers. J Autism Dev Disord 2023. DOI:10.1007/s10803–022–05758-x; Quesnel-Vallières M., Weatheritt R.J., Cordes S.P., Blencowe B.J. Autism Spectrum Disorder: Insights into Convergent Mechanisms from Transcriptomics. Nat Rev Genet 2019; 20: 51–63. DOI:10.1038/s41576–018–0066–2; Dickerson A.S., Rahbar M.H., Bakian A.V., Bilder D.A., Harrington R.A., Pettygrove S. et al. Autism spectrum disorder prevalence and associations with air concentrations of lead, mercury, and arsenic. Environment Monitoring Assessm 2016; 188(7): 407. DOI:10.1007/s10661–016–5405–1; Bölte S., Girdler S., Marschik P.B. The contribution of environmental exposure to the etiology of autism spectrum disorder. Cell Mol Life Sci 2019; 76: 1275–1297. DOI:10.1007/s00018–018–2988–4; Emberti Gialloreti L., Mazzone L., Benvenuto A., Fasano A., Alcon A.G., Kraneveld A. et al. Risk and protective environmental factors associated with autism spectrum disorder: evidence-based principles and recommendations. J Clin Med 2019; 8(2): 217. DOI:10.3390/jcm8020217; Cheroni C., Caporale N., Testa G. Autism spectrum disorder at the crossroad between genes and environment: Contributions; convergences; and interactions in ASD developmental pathophysiology. Mol Autism 2020; 11: 69. DOI:10.1186/s13229–020–00370–1; Falk A., Heine V.M., Harwood A.J., Sullivan P.F., Peitz M., Brüstle O. et al. Modeling psychiatric disorders: from genomic findings to cellular phenotypes. Mol Psychiatry 2016; 21(9): 1167–1179. DOI:10.1038/mp.2016.89; De Rubeis S., He X., Goldberg A.P., Poultney C.S., Samocha K., Cicek A.E. et al. Synaptic, Transcriptional and Chromatin Genes Disrupted in Autism. Nature 2014; 515: 209–215. DOI:10.1038/nature13772; Gaugler T., Klei L., Sanders S.J., Bodea C.A., Goldberg A.P., Lee A.B. et al. Most Genetic Risk for Autism Resides with Common Variation. Nat Genet 2014; 46: 881–885. DOI:10.1038/ng.3039; Sanders S.J., He X., Willsey A.J., Ercan-Sencicek A.G., Samocha K.E., Cicek A.E. et al. Insights into Autism Spectrum Disorder Genomic Architecture and Biology from 71 Risk Loci. Neuron 2015; 87: 1215–1233. DOI:10.1016/j.neuron.2015.09.016; Yu T.W., Chahrour M.H., Coulter M.E., Jiralerspong S., Okamura-Ikeda K., Ataman B. et al. Using Whole-Exome Sequencing to Identify Inherited Causes of Autism. Neuron 2013; 77: 259–273. DOI:10.1016/j.neuron.2012.11.002; Doan R.N., Lim E.T., De Rubeis S., Betancur C., Cutler D.J., Chiocchetti A.G., et al.; Autism Sequencing Consortium. Recessive Gene Disruptions in Autism Spectrum Disorder. Nat Genet 2019; 51: 1092–1098. DOI:10.1038/s41588–019–0433–8; Yang C., Li J., Wu Q., Yang X., Huang A.Y., Zhang J. et al. AutismKB 2.0: A knowledgebase for the genetic evidence of autism spectrum disorder. Database 2018; 2018: bay106. DOI:10.1093/database/bay106; Weiner D.J., Wigdor E.M., Ripke S., Walters R.K., Kosmicki J.A., Grove J., et al.; iPSYCH-Broad Autism Group. Polygenic transmission disequilibrium confirms that common and rare variation act additively to create risk for autism spectrum disorders. Nat Genet 2017; 49(7): 978–985. DOI:10.1038/ng.3863; Lord C., Brugha T.S., Charman T., Cusack J., Dumas G., Frazier T. et al. Autism spectrum disorder. Nat Rev Dis Prim 2020; 6: 5. DOI:10.1038/s41572–019–0138–4; Lozano R., Gbekie C., Siper P.M., Srivastava S., Saland J.M., Sethuram S. et al. FOXP1 Syndrome: A Review of the Literature and Practice Parameters for Medical Assessment and Monitoring. J Neurodev Disord 2021; 13(1): 18. DOI:10.1186/s11689–021–09358–1; Lavado A., He Y., Paré J., Neale G., Olson E.N., Giovannini M., Cao X. Tumor Suppressor Nf2 Limits Expansion of the Neural Progenitor Pool by Inhibiting Yap/Taz Transcriptional Coactivators. Development 2013; 140: 3323–3334. DOI:10.1242/dev.096537; Antonell A., Del Campo M., Magano L.F., Kaufmann L., de la Iglesia J.M., Gallastegui F. et al. Partial 7q11.23 Deletions Further Implicate GTF2I and GTF2IRD1 as the Main Genes Responsible for the Williams-Beuren Syndrome Neurocognitive Profile. J Med Genet 2010; 47(5): 312–320. DOI:10.1136/jmg.2009.071712; Wang Y., Zeng C., Li J., Zhou Z., Ju X., Xia S. et al. PAK2 Haploinsufficiency Results in Synaptic Cytoskeleton Impairment and Autism-Related Behavior. Cell Rep 2018; 24: 2029–2041. DOI:10.1016/j.celrep.2018.07.061; Noroozi R., Taheri M., Ghafouri-Fard S., Bidel Z., Omrani M. D., Moghaddam A.S. et al. Meta-analysis of GABRB3 Gene Polymorphisms and Susceptibility to Autism Spectrum Disorder. J Mol Neurosci 2018; 65(4): 432–437. DOI:10.1007/s12031–018–1114–2; Provenzi L., Fumagalli M., Sirgiovanni I., Giorda, R., Pozzoli U., Morandi F. et al. Pain-related stress during the Neonatal Intensive Care Unit stay and SLC6A4 methylation in very preterm infants. Front Behavioral Neuroscie 2015; 9: 99. DOI:10.3389/fnbeh.2015.00099; Kertes D.A., Kamin H.S., Hughes D.A., Rodney N.C., Bhatt S., Mulligan C.J. Prenatal Maternal Stress Predicts Methylation of Genes Regulating the Hypothalamic–Pituitary–Adrenocortical System in Mothers and Newborns in the Democratic Republic of Congo. Child Dev 2016; 87: 61–72. DOI:10.1111/cdev.12487; Jensen Peña C., Monk C., Champagne F.A. Epigenetic effects of prenatal stress on 11β-hydroxysteroid dehydrogenase-2 in the placenta and fetal brain. PloS One 2012; 7(6): e39791. DOI:10.1371/journal.pone.0039791; Pierzynowska K., Gaffke L., Żabińska M., Cyske Z., Rintz E., Wiśniewska K. et al. Roles of the Oxytocin Receptor (OXTR) in Human Diseases. Intern J Mol Sci 2023; 24(4): 3887. DOI:10.3390/ijms24043887; Song X., Zhou X., Yang F., Liang H., Wang Z., Li R. et al. Association between prenatal bisphenol a exposure and promoter hypermethylation of CAPS2, TNFRSF25, and HKR1 genes in cord blood. Environ Res 2020; 190: 109996. DOI:10.1016/j.envres.2020.109996; Kundakovic M., Jaric I. The Epigenetic Link between Prenatal Adverse Environments and Neurodevelopmental Disorders. Genes (Basel) 2017; 8(3): 104. DOI:10.3390/genes8030104; Aloe L., Rocco M.L., Bianchi P., Manni L. Nerve growth factor: from the early discoveries to the potential clinical use. J Transl Med 2012; 10: 239. DOI:10.1186/1479–5876–10–239; Poot M. Connecting the CNTNAP2 Networks with Neurodevelopmental Disorders. Mol Syndromol 2015; 6(1): 7–22. DOI:10.1159/000371594; Jossin Y. Reelin Functions, Mechanisms of Action and Signaling Pathways During Brain Development and Maturation. Biomolecules 2020; 10: 964. DOI:10.3390/biom10060964; Davis J.K., Broadie K. Multifarious Functions of the Fragile X Mental Retardation Protein. Trends Genet 2017; 33(10): 703–714. DOI:10.1016/j.tig.2017.07.008; Sánchez-Lafuente C.L., Kalynchuk L.E., Caruncho H.J., Ausió J. The Role of MeCP2 in Regulating Synaptic Plasticity in the Context of Stress and Depression. Cells 2022; 11(4): 748. DOI:10.3390/cells11040748; Greer P.L., Hanayama R., Bloodgood B.L., Mardinly A.R., Lipton D.M., Flavell S.W. et al. The Angelman Syndrome-associated ubiquitin ligase Ube3A regulates synapse development by ubiquitinating Arc. Cell 2010; 140(5): 704–716. DOI:10.1016/j.cell.2010.01.026; Chen M., Sun Y., Qian Y., Chen N., Li H., Wang L., Dong M. Case report: FOXP1 syndrome caused by a de novo splicing variant (c.1652+5 G>A) of the FOXP1 gene. Front Genet 2022; 13: 926070. DOI:10.3389/fgene.2022.926070; Chen X., Wang M., Zhang Q., Hou Y., Huang X., Li S., Wu J. Stress response genes associated with attention deficit hyperactivity disorder: A case-control study in Chinese children. Behav Brain Res 2019; 363: 126–134. DOI:10.1016/j.bbr.2019.01.051; Wu S., Jia M., Ruan Y., Liu J., Guo Y., Shuang M. et al. Positive association of the oxytocin receptor gene (OXTR) with autism in the Chinese Han population. Biol Psychiatry 2005; 58: 74–77. DOI:10.1016/j.biopsych.2005.03.013; Liu X., Kawamura Y., Shimada T., Otowa T., Koishi S., Sugiyama T. et al. Association of the oxytocin receptor (OXTR) gene polymorphisms with autism spectrum disorder (ASD) in the Japanese population. J Hum Genet 2010; 55: 137–141. DOI:10.1038/jhg.2009.140; Lerer E., Levi S., Salomon S., Darvasi A., Yirmiya N., Ebstein R.P. Association between the oxytocin receptor (OXTR) gene and autism: Relationship to Vineland Adaptive Behavior Scales and cognition. Mol Psychiatry 2008; 13: 980–988. DOI:10.1038/sj.mp.4002087; LoParo D., Waldman I.D. The oxytocin receptor gene (OXTR) is associated with autism spectrum disorder: A meta-analysis. Mol Psychiatry 2015; 20: 640–646. DOI:10.1038/mp.2014.77; Ocakoğlu F.T., Köse S., Özbaran B., Onay H. The oxytocin receptor gene polymorphism -rs237902- is associated with the severity of autism spectrum disorder: A pilot study. Asian J Psychiatr 2018; 31: 142–149. DOI:10.1016/j.ajp.2018.01.002; Yoo H.J., Yang S.Y., Cho I.H., Park M., Kim S.A. Polymorphisms of BDNF Gene and Autism Spectrum Disorders: Family Based Association Study with Korean Trios. Psychiatry Investig 2014; 11(3): 319–324. DOI:10.4306/pi.2014.11.3.319; Li D., Zhang L., Bai T., Huang W., Ji G-J., Yang T. et al. Common variants of the autism-associated CNTNAP2 gene contribute to the modulatory effect of social function mediated by temporal cortex. Behav Brain Res 2021; 409:113319. DOI:10.1016/j.bbr.2021.113319; Wen Z., Cheng T-L., Li G-Z., Sun S-B., Yu S-Y., Zhang Y. et al. Identification of autism-related MECP2 mutations by whole-exome sequencing and functional validation. Mol Autism 2017; 8: 43. DOI:10.1186/s13229–017–0157–5; Xing L., Simon J.M., Ptacek T.S., Yi J.J., Loo L., Mao H. et al. Autism-linked UBE3A gain-of-function mutation causes interneuron and behavioral phenotypes when inherited maternally or paternally in mice. Cell Rep 2023; 42(7): 112706. DOI:10.1016/j.celrep.2023.112706; Moore L., Le T., Fan G. DNA Methylation and Its Basic Function. Neuropsychopharmacol 2013; 38: 23–38. DOI:10.1038/npp.2012.112
-
2Academic Journal
Συγγραφείς: O. S. Glotov, A. N. Chernov, P. A. Suchko, Yu. A. Eismont, L. A. Mayorova, О. С. Глотов, А. Н. Чернов, П. A. Cучко, Ю. А. Эйсмонт, Л. А. Майорова
Συνεισφορές: The study was supported by a grant from the Russian Science Foundation, project No. 22–15–00324 “Social tactile contacts and their role in psycho-emotional rehabilitation” (https://rscf.ru/en/project/22–15–00324/), Исследование выполнено при поддержке гранта Российского научного фонда, проект № 22–15–00324 «Социальные тактильные контакты и их роль в психоэмоциональной реабилитации» (https://rscf.ru/en/project/22–15–00324/)
Πηγή: Rossiyskiy Vestnik Perinatologii i Pediatrii (Russian Bulletin of Perinatology and Pediatrics); Том 69, № 1 (2024); 34-44 ; Российский вестник перинатологии и педиатрии; Том 69, № 1 (2024); 34-44 ; 2500-2228 ; 1027-4065
Θεματικοί όροι: тактильный контакт, autism spectrum disorders, symptoms, etiological factors, methylation profile, genetic associations, rehabilitation, tactile contact, расстройства аутистического спектра, профиль метилирования, генетические ассоциации, реабилитация
Περιγραφή αρχείου: application/pdf
Relation: https://www.ped-perinatology.ru/jour/article/view/1936/1456; Jasoliya M., Gu J., AlOlaby R.R., Durbin-Johnson B., Chedin F., Tassone F. Profiling Genome-Wide DNA Methylation in Children with Autism Spectrum Disorder and in Children with Fragile X Syndrome. Genes (Basel) 2022; 13(10): 1795. DOI:10.3390/genes13101795; Autism spectrum disorders. World Health Organization. Link is active on 03. 10. 2023. http://www.who.int/news-room/fact-sheets/detail/autism-spectrum-disorders / Ссылка активна на 4. 12. 2023.; Maenner M.J., Shaw K.A., Baio J. Prevalence of autism spectrum disorder among children aged 8 years–autism and developmental disabilities monitoring network, 11 sites, united states, 2016. MMWR Surveill Summ 2020; 69: 1. DOI:10.15585/mmwr.ss6802a1; Stoccoro A., Conti E., Scaffei E., Calderoni S., Coppedè F., Migliore L., Battini R. DNA Methylation Biomarkers for Young Children with Idiopathic Autism Spectrum Disorder: A Systematic Review. Int J Mol Sci 2023; 24(11): 9138. DOI:10.3390/ijms24119138; Gibney E.R., Nolan C.M. Epigenetics and gene expression. Heredity 2010; 105: 4–13. DOI:10.1038/hdy.2010.54; Urich M.A., Nery J.R., Lister R., Schmitz R.J., Ecker J.R. MethylC-seq library preparation for base-resolution whole-genome bisulfite sequencing. Nature protocols 2015; 10(3): 475–483. DOI:10.1038/nprot.2014.114; Yong W.-S., Hsu F.-M., Chen P.-Y. Profiling genome-wide DNA methylation. Epigen Chromatin 2016; 9(1): 26. DOI:10.1186/s13072–016–0075–3; Herman J.G., Graff J.R., Myöhänen S., Nelkin B.D., Baylin S.B. Methylation-specific PCR: a novel PCR assay for methylation status of CpG islands. Proceed National Academy Scie USA 1996; 93(18): 9821–9826. DOI:10.1073/pnas.93.18.9821; Bonora G., Rubbi L., Morselli M., Ma F., Chronis C., Plath K., Pellegrini M. DNA methylation estimation using methylation-sensitive restriction enzyme bisulfite sequencing (MREBS). PLoS One 2019; 14(4): 14(4): e0214368. DOI:10.1371/journal.pone.0214368; Yokoyama S., Kitamoto S., Yamada N., Houjou I., Sugai T., Nakamura S-I. et al. The application of methylation specific electrophoresis (MSE) to DNA methylation analysis of the 5′CpG island of mucin in cancer cells. BMC cancer 2012; 12(1): 67. DOI:10.1186/1471–2407–12–67; Nazmul I.M., Yadav S., Hakimul Haque M., Munaz A., Islam F., Al Hossain M.S. et al. Optical biosensing strategies for DNA methylation analysis. Biosens Bioelectron 2017; 92: 668–678. DOI:10.1016/j.bios.2016.10.034; Hernández H.G., Tse M.Y., Pang S.C., Arboleda H., Forero D.A. Optimizing methodologies for PCR-based DNA methylation analysis. BioTechniques 2013; 55(4): 181–197. DOI:10.2144/000114087; Sepulveda A.R., Jones D., Ogino S., Samowitz W., Gulley M.L., Edwards R. et al. CpG Methylation Analysis–Current Status of Clinical Assays and Potential Applications in Molecular Diagnostics. J Mol Diagn 2009; 11(4): 266–278. DOI:10.2353/jmoldx.2009.080125; Qin X., Xu J., Zhong Y. Multidisciplinary Management of Liver Metastases in Colorectal Cancer. Clin Translat Oncol 2020; 22(5): 647–662; Erny G.L., Acunha T., Simó C., Cifuentes A., Alves A. Background correction in separation techniques hyphenated to high-resolution mass spectrometry — thorough correction with mass spectrometry scans recorded as profile spectra. J Chromatography A 2017; 1492: 98–105. DOI:10.1016/j.chroma.2017.02.052; Yasuda Y., Matsumoto J., Miura K., Hasegawa N., Hashimoto R. Genetics of autism spectrum disorders and future direction. J Hum Genet 2023; 68: 193–197. DOI:10.1038/s10038–022–01076–3; Min J.L., Hemani G., Hannon E., Dekkers K.F., Castillo-Fernandez J., Luijk R. et al. Genomic and phenotypic insights from an atlas of genetic effects on DNA methylation. Nat Genet 2021; 53(9): 1311–1321. DOI:10.1038/s41588–021–00923-x; Duffney L.J., Valdez P., Tremblay M.W., Cao X., Montgomery S., McConkie-Rosell A., Jiang Y.-H. Epigenetics and Autism Spectrum Disorder: A Report of an Autism Case with Mutation in H1 Linker Histone HIST1H1E and Literature Review. Am J Med Genet B Neuropsychiatr Genet 2018; 177: 426–433. DOI:10.1002/ajmg.b.32631; Williams L.A., LaSalle J.M. Future Prospects for Epigenetics in Autism Spectrum Disorder. Mol Diagn Ther 2022; 26: 569–579. DOI:10.1007/s40291–022–00608-z; Jin Y., Allen E.G., Jin P. Cell-free DNA methylation as a potential biomarker in brain disorders. Epigenomics 2022; 14: 369–374. DOI:10.2217/epi-2021–0416; Alshamrani A.A., Alshehri S., Alqarni S.S., Ahmad S.F., Alghibiwi H., Al-Harbi N.O. et al. DNA Hypomethylation Is Associated with Increased Inflammation in Peripheral Blood Neutrophils of Children with Autism Spectrum Disorder: Understanding the Role of Ubiquitous Pollutant Di(2-ethylhexyl) Phthalate. Metabolites 2023; 13: 458. DOI:10.3390/metabo13030458; Kurdyukov S., Bullock M. DNA Methylation Analysis: Choosing the Right Method. Biology. 2016; 5: 3. DOI:10.3390/biology5010003; Araujo D.J., Anderson A.G., Berto S., Runnels W., Harper M., Ammanuel S. et al. FoxP1 orchestration of ASD-relevant signaling pathways in the striatum. Genes Dev 2015; 29(20): 2081–2096. DOI:10.1101/gad.267989.115; Jensen D., Chen J., Turner J. A., Stephen J. M., Wang Y. P., Wilson T. W. et al. Epigenetic associations with adolescent grey matter maturation and cognitive development. Front Genet 2023; 14: 1222619. DOI:10.3389/fgene.2023.1222619; Chau C.M., Ranger M., Sulistyoningrum D., Devlin A.M., Oberlander T.F., Grunau R.E. Neonatal pain and COMT Val158Met genotype in relation to serotonin transporter (SLC6A4) promoter methylation in very preterm children at school age. Front Behav Neuroscie 2014; 8: 409. DOI:10.3389/fnbeh.2014.00409; Appleton A.A., Lester B.M., Armstrong D.A., Lesseur C., Marsit C.J. Examining the joint contribution of placental NR3C1 and HSD11B2 methylation for infant neurobehavior. Psychoneuroendocrinology 2015; 52: 32–42. DOI:10.1016/j.psyneuen.2014.11.004; Andari E., Nishitani S., Kaundinya G., Caceres G.A., Morrier M.J., Ousley O. et al. Epigenetic modification of the oxytocin receptor gene: Implications for autism symptom severity and brain functional connectivity. Neuropsychopharmacology 2020; 45: 1150–1158. DOI:10.1038/s41386–020–0610–6; Song X., Zhou X., Yang F., Liang H., Wang Z., Li R. et al. Association between prenatal bisphenol a exposure and promoter hypermethylation of CAPS2, TNFRSF25, and HKR1 genes in cord blood. Environ Res 2020; 190: 109996. DOI:10.1016/j.envres.2020.109996; Kundakovic M., Gudsnuk K., Herbstman J. B., Tang D., Perera F.P., Champagne F.A. DNA methylation of BDNF as a biomarker of early-life adversity. Proc Natl Acad Sci USA 2015; 112(22): 6807–6813. DOI:10.1073/pnas.1408355111; García-Ortiz M.V., de la Torre-Aguilar M.J., Morales-Ruiz T., Gómez-Fernández A., Flores-Rojas K., Gil-Campos M. et al. Analysis of Global and Local DNA Methylation Patterns in Blood Samples of Patients with Autism Spectrum Disorder. Front Pediatr 2021; 9: 685310. DOI:10.3389/fped.2021.685310; Schneider E., Hajj N.E., Richter S., Roche-Santiago J., Nanda I., Schempp W. et al. Widespread differences in cortex DNA methylation of the “language gene” CNTNAP2 between humans and chimpanzees. Epigenetics 2014; 9(4): 533–545. DOI:10.4161/epi.27689; Gallo R., Stoccoro A., Cagiano R., Nicolì V., Ricciardi R., Tancredi R. et al. Correlation among maternal risk factors; gene methylation and disease severity in females with autism spectrum disorder. Epigenomics 2022; 14(4): 175–185. DOI:10.2217/epi-2021–0494; Verheij C., Bakker C.E., de Graaff E., Keulemans J., Willemsen R., Verkerk A.J.M. et al. Characterization and Localization of the FMR-1 Gene Product Associated with Fragile X Syndrome. Nature 1993; 363: 722–724. DOI:10.1038/363722a0; Yang X., Li L., Chai X., Liu J. The association between ST-8SIA2 gene and behavioral phenotypes in children with autism spectrum disorder. Front Behav Neurosci 2022; 16: 929878. DOI:10.3389/fnbeh.2022.929878; Zhao Y., Zhou C., Yu H., Zhang W., Cheng F., Yu H. et al. Association between the methylation of six apoptosis-associated genes with autism spectrum disorder. Mol Med Rep 2018; 18: 4629–4634. DOI:10.3892/mmr.2018.9473; Jensen Peña C., Monk C., Champagne F.A. Epigenetic effects of prenatal stress on 11β-hydroxysteroid dehydrogenase-2 in the placenta and fetal brain. PloS One 2012; 7(6): e39791. DOI:10.1371/journal.pone.0039791; Bahado-Singh R.O., Vishweswaraiah S., Aydas B., Mishra N.K., Yilmaz A., Guda C., Radhakrishna U. Artificial intelligence analysis of newborn leucocyte epigenomic markers for the prediction of autism. Brain Res 2019; 1724: 146457. DOI:10.1016/j.brainres.2019.146457; Aspra Q., Cabrera-Mendoza B., Morales-Marín M.E., Márquez C., Chicalote C., Ballesteros A. et al. Epigenome-Wide Analysis Reveals DNA Methylation Alteration in ZFP57 and Its Target RASGFR2 in a Mexican Population Cohort with Autism. Children 2022; 9: 462. DOI:10.3390/children9040462; Song Y.S., Lee Y.-S., Narasimhan P., Chan P.H. Reduced Oxidative Stress Promotes NF-κB-Mediated Neuroprotective Gene Expression after Transient Focal Cerebral Ischemia: Lymphocytotrophic Cytokines and Antiapoptotic Factors. J Cereb Blood Flow Metab 2007; 27: 764–775. DOI:10.1038/sj.jcbfm.9600379; Bakulski K.M., Dou J.F., Feinberg J.I., Aung M.T., Ladd-Acosta C., Volk H.E. et al. Autism-Associated DNA Methylation at Birth From Multiple Tissues Is Enriched for Autism Genes in the Early Autism Risk Longitudinal Investigation. Front Mol Neurosci 2021; 14: 775390. DOI:10.3389/fnmol.2021.775390; Nagarajan R.P., Hogart A. R., Gwye Y., Martin M.R., LaSalle J.M. Reduced MeCP2 expression is frequent in autism frontal cortex and correlates with aberrant MECP2 promoter methylation. Epigenetics 2006; 1(4): e1–11. DOI:10.4161/epi.1.4.3514; Jiang Y.-H., Sahoo T., Michaelis R.C., Bercovich D., Bressler J., Kashork C.D. et al. A mixed epigenetic/genetic model for oligogenic inheritance of autism with a limited role for UBE3A. Am J Med Genet A 2004; 131(1): 1–10. DOI:10.1002/ajmg.a.30297; Stoccoro A., Gallo R., Calderoni S., Cagiano R., Muratori F., Migliore L. et al. Artificial neural networks reveal sex differences in gene methylation; and connections between maternal risk factors and symptom severity in autism spectrum disorder. Epigenomics 2022; 14: 1181–1195. DOI:10.2217/epi-2022–0179; Wheeler A.C., Mussey J., Villagomez A., Bishop E., Raspa M., Edwards A. et al. DSM-5 Changes and the Prevalence of Parent-Reported Autism Spectrum Symptoms in Fragile X Syndrome. J Autism Dev Disord 2015; 45: 816–829. DOI:10.1007/s10803–014–2246-z; Nardone S., Sams D.S., Zito A., Reuveni E., Elliott E. Dysregulation of Cortical Neuron DNA Methylation Profile in Autism Spectrum Disorder. Cereb Cortex 2017; 27(12): 5739–5754. DOI:10.1093/cercor/bhx250; Baudouin S.J., Gaudias J., Gerharz S., Hatstatt L., Zhou K., Punnakkal P. et al. Shared synaptic pathophysiology in syndromic and nonsyndromic rodent models of autism. Science 2012; 338(6103): 128–132. DOI:10.1126/science.1224159; Provenzi L., Fumagalli M., Sirgiovanni I., Giorda, R., Pozzoli U., Morandi F. et al. Pain-related stress during the Neonatal Intensive Care Unit stay and SLC6A4 methylation in very preterm infants. Front Behav Neuroscie 2015; 9: 99. DOI:10.3389/fnbeh.2015.00099; Devlin A.M., Brain U., Austin J., Oberlander T.F. Prenatal exposure to maternal depressed mood and the MTHFR C677T variant affect SLC6A4 methylation in infants at birth. PloS One 2010; 5(8): e12201. DOI:10.1371/journal.pone.0012201; Folger A.T., Ding L., Ji H., Yolton K., Ammerman R.T., Van Ginkel J.B., Bowers K. Neonatal NR3C1 Methylation and Social-Emotional Development at 6 and 18 Months of Age. Front Behav Neuroscie 2019; 13: 14. DOI:10.3389/fnbeh.2019.00014; Lester B.M., Marsit C.J., Giarraputo J., Hawes K., LaGasse L.L., Padbury J.F. Neurobehavior related to epigenetic differences in preterm infants. Epigenomics 2015; 7(7): 1123–36. DOI:10.2217/epi.15.63; Rijlaarsdam J., van IJzendoorn M.H., Verhulst F.C., Jaddoe V.W.V., Felix J.F., Tiemeier H., Bakermans-Kranenburg M.J. Prenatal stress exposure, oxytocin receptor gene (OXTR) methylation, and child autistic traits: The moderating role of OXTR rs53576 genotype. Autism Res 2017; 10: 430–438. DOI:10.1002/aur.1681; Grove T. B., Burghardt K. J., Kraal A. Z., Doughert R. J., Taylor S. F., Ellingrod V.L. Oxytocin Receptor (OXTR) Methylation and Cognition in Psychotic Disorders. Molr Neuropsychiatry. 2016; 2(3): 151–160. DOI:10.1159/000448173; Provenzano G., Pangrazzi L., Poli A., Corsi M. Role of brain-derived neurotrophic factor (BDNF) in autism spectrum disorders. J Clin Med 2019; 8(5): 627. DOI:10.3390/jcm8050627; Connor S.A., Wang Y.T. A Place at the Table: LTD as a mediator of memory genesis. Neuroscientist 2016; 22(4): 359–371. DOI:10.1177/1073858415588498; Nguyen A., Rauch T.A., Pfeifer G.P., Hu V.W. Global methylation profiling of lymphoblastoid cell lines reveals epigenetic contributions to autism spectrum disorders and a novel autism candidate gene, RORA, whose protein product is reduced in autistic brain. FASEB J 2010; 24(8): 3036–3051. DOI:10.1096/fj.10–154484; Lopez S.J., Dunaway K., Islam M.S., Mordaunt C., Ciernia A.V., Meguro-Horik M. et al. UBE3A-mediated regulation of imprinted genes and epigenome-wide marks in human neurons. Epigenetics 2017; 12(11): 982–990. DOI:10.1080/15592294.2017.1376151; Булекбаева Ш.А., Байдарбекова А.К., Тлеулинова Р.Р., Абдрахманова У.Ш., Алтынбекова А.Ж. Реабилитация детей с расстройствами аутистического спектра: разносторонняя оценка проблем и триггерных факторов для работы мультидисциплинарной команды. Kazakh J Phys Med & Rehab 2019; 2 (27): 4–14.; Shahmoradi L., Rezayi S. Cognitive rehabilitation in people with autism spectrum disorder : a systematic review of emerging virtual reality-based approaches. J NeuroEngineering Rehabil 2022; 19: 91. DOI:10.1186/s12984–022–01069–5; Kalra R., Gupta M., Sharma P. Recent advancement in interventions for autism spectrum disorder : A review. J Neurorestoratol 2023; 11(3): 100068. DOI:10.1016/j.jnrt.2023.100068
-
3Academic Journal
Συγγραφείς: A.E. Abaturov, A.A. Nikulinа
Πηγή: Zdorovʹe Rebenka, Vol 15, Iss 4, Pp 238-251 (2020)
CHILD`S HEALTH; Том 15, № 4 (2020); 238-251
Здоровье ребенка-Zdorovʹe rebenka; Том 15, № 4 (2020); 238-251
Здоров'я дитини-Zdorovʹe rebenka; Том 15, № 4 (2020); 238-251Θεματικοί όροι: 2. Zero hunger, obesity, phenotypes, genetic associations, children, review, ожиріння, фенотипи, генетичні асоціації, діти, огляд, Pediatrics, RJ1-570, 3. Good health, 03 medical and health sciences, 0302 clinical medicine, ожирение, фенотипы, генетические ассоциации, дети, обзор
Περιγραφή αρχείου: application/pdf
-
4Academic Journal
Συγγραφείς: A. N. Kucher, А. Н. Кучер
Πηγή: Medical Genetics; Том 14, № 5 (2015); 8-17 ; Медицинская генетика; Том 14, № 5 (2015); 8-17 ; 2073-7998
Θεματικοί όροι: многофакторные заболевания, nutrients, genetic association, nutrigenomics, common diseases, нутриенты, генетические ассоциации, нутригеномика
Περιγραφή αρχείου: application/pdf
Relation: https://www.medgen-journal.ru/jour/article/view/13/28; 10 ведущих причин смерти в мире // Информационный бюллетень. — №310, Май 2014 г. http://www.who.int/mediacent-re/ factsheets/fs310/ru/ (дата обращения — февраль 2015 г.); Всемирная организация здравоохранения. Рацион питания и предупреждение хронических заболеваний / Доклад Совместного консультативного совещания ВОЗ/ФАО. Женева, 2003, http://whqlibdoc.who.int/trs/WHO_ TRS_916_rus.pdf?ua=1&ua=1 (дата обращения — февраль 2015 г.); Всемирная организация здравоохранения. Рацион, питание и предупреждение хронических заболеваний / Доклад исследовательской группы ВОЗ. 1993 г. — 208 с.; Гаппаров М.М., Мойсеёнок Ф.Г. Биохимические основы нутрициологии // Питание и обмен веществ. Сб. научн. статей. — Вып. 3. Минск: «Белорусская наука», 2008. — С. 5—19.; Гольцов В.Р., Багненко С.Ф., Луфт В.М. и др. Нутриционная поддержка в лечении острого деструктивного панкреатита // Анналы хирургической гепатологии. — 2009. — Т. 14, №1. — С. 18—22.; Громова О.А. Калачаева А.Г., Торшин И.Ю. и др. О диагностике дефицита магния. Часть 1. // Архивъ внутренней медицины. — 2014. — №2(16). — С. 5—10.; Громова О.А., Калачева А.Г., Торшин И.Ю. и др. Недостаточность магния — фактор риска коморбидных состояний: результаты крупомасштабного скрининга магниевого статуса в регионах // Фраматека. — 2013. — №6. — С. 116—129.; Громова О.А., Торшин И.Ю., Гришина Т.Р. Мировой опыт применения цитрата магния в медицине // Трудный пациент. — 2010. — Т. 8, №8. — С. 20—27.; Калабеков И.Г. Российские реформы в цифрах и фактах. http://refru.ru (дата обращения — февраль 2015 г.); Луфт В.М. Клиническая трофология: становление и перспективы развития / Питание и обмен веществ. Сб. научн. статей. — Вып. 3. Минск: «Белорусская наука», 2008. — С. 197—174.; Недогода С.В. Роль препаратов магния в ведении пациентов терапевтического профиля // Лечащий врач. — 2009. — №6. — С. 61—66.; Пузырев В.П., Кучер А.Н. Эволюционно-онтогенетические аспекты патогенетики хронических болезней человека // Генетика. — 2011. — Т. 47, №12. — С. 1573—1585.; Шилов А.М., Мельник М.В., Осия А.О. и др. Роль дефицита магния в патогенезе метаболического синдрома // Рус. Мед. журнал. — 2008. — Т. 16, №21. — С. 1439—1444.; Berna G., Oliveras-Lopez M.J., Jurado-Ruiz E. et al. Nutri-genetics and nutrigenomics insights into diabetes etiopathogenesis // Nutrients. — 2014. — Vol. 6(11). — P. 5338—5369.; Christensen B.C., Houseman E.A., Marsit C.J. et al. Aging and Environmental Exposures Alter Tissue-Specific DNA Methyla-tion Dependent upon CpG Island Context // PLoS Genetics. — 2009. — Vol. 5. — Is. 8. — e1000602.; Chu A.Y., Workalemahu T., Paynter N.P. et al. Novel locus including FGF21 is associated with dietary macronutrient intake // Hum. Mol. Genet. — 2013. — Vol. 22, №9. — P. 1895—1902.; de Luis D.A., Aller R., Izaola O. et al. Genetic variation in the beta 3-adrenoreceptor gene (Trp64Arg polymorphism) and its influence on anthropometric parameters and insulin resistance under a high monounsaturated versus a high polyunsaturated fat hypocalo-ric diet//Ann. Nutr. Metab. — 2013. — Vol. 62(4). — P. 303—309.; Elliott R., Ong T.J. Nutritional genomics // Br. Med. J. — 2002. — Vol. 324. — P. 1438—1442.; Feinberg A.P. Genome-scale approaches to the epigenetics of common human disease // Virchows Arch. — 2010. — Vol. 456. — P. 13—21.; Fenech M., El-Sohemy A., Cahill L. et al. Nutrigenetics and nutrigenomics: viewpoints on the current status and applications in nutrition research and practice // J. Nutrigenet. Nutrigenomics. — 2011. — Vol. 4(2). — P. 69—89.; Frazier-Wood A.C. Dietary Patterns, Genes, and Health: Challenges and Obstacles to be Overcome // Curr. Nutr. Rep. — 2015. — Vol. 4. — P. 82—87.; Hancock A.M., Witonsky D.B., Ehler E. et al. Human adaptation to diet, subsistence, and ecoregion are due to subtle shifts in allele frequency // PNAS. — 2010. — Vol. 107. — Suppl. 2. — P. 8924—8930.; Hancock A.M., Witonsky D.B., Gordon A.S. et al. Adaptations to climate in candidate genes for common metabolic disorders // PLoS Genet. — 2008. — Vol. 4. — e32.; Hindorff L.A., MacArthur J., Morales J. et al. A Catalog of Published Genome-Wide Association Studies. Available at: www.genome.gov/ gwastudies. Accessed (дата обращения — февраль 2015 г.).; http://www.ncbi.nlm.nih.gov/gene/. (дата обращения — февраль 2015 г.); Kaput J., Rodriguez R.L. Nutritional genomics: the next frontier in the postgenomic era // Phisiol. Genomics. — 2004. — Vol. 16. — P. 166—177.; Kohlmeier M., da Costa K.A., Fisher L.M., Zeisel S.H. Genetic variation of folate-mediated one-carbone transfer pathway predicts susceptibility to choline deficiency in human // PNAS. — 2005. — Vol. 102. — P. 16025—16030.; Lourenco B.H., Qi L., Willett W.C. et al. FTO genotype, vitamin D status, and weight gain during childhood // Diabetes. — 2014. — Vol. 63(2). — P. 808—814.; Lucock M.D., Martin C.E., Yates Z.R., Veysey M. Diet and Our Genetic Legacy in the Recent Anthropocene: A Darwinian Perspective to Nutritional Health // Journal of Evidence-Based Complementary & Alternative Medicine. — 2014. — Vol. 19(1). — P. 68—83.; Major J.M., Yu K., Chung Ch.C. Genome-Wide Association Study Identifies Three Common Variants Associated with Serologic Response to Vitamin E in Men // J. Nutr. — 2012. — Vol. 142. — P. 866—871.; McKay J.A., Mathers J.C. Diet induced epigenetic changes and their implication for health//Acta Physiol. — 2011. — Vol. 202. — P. 103—118.; Meyer T.E., Verwoert G.C., Hwang S.J. et al. Genetic Factors for Osteoporosis Consortium; Meta Analysis of Glucose and Insulin Related Traits Consortium. Genome-wide association studies of serum magnesium, potassium, and sodium concentrations identify six Loci influencing serum magnesium levels // PLoS Genet. — 2010. — Vol. 6(8). — pii: e1001045.; Nuno N.B., Heuberger R. Nutrigenetic associations with cardiovascular disease // Rev. Cardiovasc. Med. — 2014. — Vol. 15(3). — P. 217-225.; Online Mendelian Inheritance in Man. http://www.ncbi.nlm.nih.gov/omim/ (дата обращения — февраль 2015 г.).; Ortega-Azorin C., Sorli J.V., Asensio E.M.et al. Association ofthe FTO rs9939609 and MC4Rrs17782313polymorphismwithty-pe 2 diabetes are modulated by diet, being higher when adherence to the Mediterranean diet pattern is low // Cardiovas. Diabetol. — 2012. — Vol. 11. — P. 137. (http://www.cardiab.com/ content/11/1/137).; Perez-Martinez P., Lopez-Miranda J., Cruz-Teno C. et al. Adiponectin Gene Variants Are Associated with Insulin Sensitivity in Response to Dietary Fat Consumption in Caucasian Men // J. Nutr. — 2008. — Vol. 138. — P. 1609—1614.; Perry G.H., Dominy N.J., Claw K.G. et al. Diet and the evolution of human amylase gene copy number variation // Nat. Genet. — 2007. — Vol. 39, №10. — P. 1256—1260.; Raj S.M., Pagani L., Romero I.G. et al. Ageneral linear model-based approach for inferring selection to climate // BMC Genetics. — 2013. — Vol. 14. — P. 87. http://www.biomedcentral.com/ 1471-2156/14/87/.; Relton C.L., Smith G.D. Epigenetic Epidemiologe of common complex disease: prospects for prediction, prevention, and treatment // PLoS Medicine. — 2010. — Vol. 7, №10. — e1000356.; Smith C.E., Tucker K.L., Yiannakouris N. Perilipin Polymorphism Interacts with Dietary Carbohydrates to Modulate Anthropometric Traits in Hispanics of Caribbean Origin // J. Nutr. — 2008. — Vol. 138. — P. 1852—1858.; Speakman J.R. Evolutionary Perspectives on the Obesity Epidemic: Adaptive, Maladaptive, and Neutral Viewpoints // Annu. Rev. Nutr. — 2013. — Vol. 33. — P. 289—317.; Stemburgo T., Azevedo M.J., Gross J.L. et al. The rs9939609 polymorphism in the FTO gene is associate with fat and fiber intakes in patients with 2 diabetes // J. Nutrigenet. Nutrigenom. — 2013. — Vol. 6(2). — P. 97—106.; Tanaka T., Ngwa J.S., van Rooij F.J. et al. Genome-wide meta-analysis of observational studies shows common genetic variants associated with macronutrient intake // Am. J. Clin. Nutr. — 2013. — Vol. 97(6). — P. 1395—1402.; Thompson E.E., Kuttab-Boulos H., Witonsky D. et al. CYP3A variation and the evolution of salt-sensitivity variants // Am. J. Hum. Genet. — 2004. — Vol. 75, №6. — P. 1059—1069.; Young J.H., Chang Y.P., Kim J.D. et al. Differential susceptibility to hypertension is due to selection during the out-of-Africa expansion // PLoS Genet. — 2005. — Vol. 1, №6. — e82.; Zeisel S.H. Nutrigenomics and metabolomics will change clinical nutrition and public health practice: insights from studies on dietary requirements for choline // Am. J. Clin. Nutr. — 2007. — Vol. 86. — P. 542—548.; Zhang Y., De S., Garne J.R. et al. Systematic analysis, comparison, and integration of disease based human genetic association data and mouse genetic phenotypic information // BMC Medical Genomics. — 2010. — Vol. 3 (1). http://www.biomedcentral. com/1755-8794/3/1
-
5Academic Journal
Συγγραφείς: A. V. Tyurin, R. I. Khusainova, R. A. Davletshin, E. K. Khusnutdinova, А. В. Тюрин, Р. И. Хусайнова, Р. А. Давлетшин, Э. К. Хуснутдинова
Πηγή: Medical Genetics; Том 12, № 3 (2013); 3-10 ; Медицинская генетика; Том 12, № 3 (2013); 3-10 ; 2073-7998
Θεματικοί όροι: эпигенетика, candidate genes, genetic association, epigenetic, кандидатные гены, генетические ассоциации
Περιγραφή αρχείου: application/pdf
Relation: https://www.medgen-journal.ru/jour/article/view/27/56; Артриты и хроническая суставная боль // Medicus armi-cus. — 2003. — №1. — С. 15.; Берглезов М.А., Угнивенко В.И., Надгериев В.М. Комплексное лечение больных с тяжёлыми нарушениями функции нижних конечностей в амбулаторных условиях: Пособие для врачей. — М.: ЦИТО, 1999. — 28 с.; Митрофанов В.А. Остеоартроз: факторы риска, патогенез и современная терапия // Саратовский научно-медицинский журнал. — 2008. — №2. — C. 23—30.; Цветкова Е.С. Остеоартроз // Ревматические болезни / Под ред. В.А. Насонова, Н.В. Бунчук. — М.: Медицина, 1997. — С. 335—348.; Abramson S.B. Developments in the scientific understanding of osteoarthritis // Ar-hri-is Res. Ther. — 2009. — №11. — P. 227.; Alakokko L. Single base mutation in the type II procollagen gene (COL2AI) as a cause of primary osteoarthritis associated with a mild chondrodysplasia // Proc. Natl. Acad. Sci. — 1990. — Vol. 87. — P. 6565—6568.; Alexopoulos L.G. Developmental and osteoarthritic changes in Col6a1 knockout mice: the biomechanics of coll agen VI in the cartilage pericellular matrix // Arthritis Rheum. — 2009. — Vol. 60, №3. — P. 771—779.; Appleton C.T. G. Global Analyses of Gene Expression in Early Experimental Osteoarthritis // Arthritis Rheum. — 2007. — Vol. 56, №6. — P. 1854—1868.; Briggs M.D. Diverse Mutations in the Gene for Cartilage Oligomeric Matrix Protein in the Pseudoachondroplasia-Multiple Epiphyseal Dysplasia Disease Spectrum // Am. J. Hum. Genet. — 1998. — Vol. 62. — P. 311—319.; Chapman K., Valdes A.M. Genetic factors in OA pathogenesis // Bone. — 2012. — Vol. 51. — P. 258—2640.; Chen H.C. Inverse Association of General Joint Hypermobility With Hand and Knee Osteoarthritis and Serum Cartilage Oligomeric Matrix Protein Levels // Arthritis Rheum. — 2008. — Vol. 58, №12. — P. 3854—3864.; Cheng S. Association of polymorphisms in the peroxisome proliferator-activated receptor c gene and osteoarthritis of the knee // Ann. Rheum. Dis. — 2006. — Vol. 65. — P. 1394—1397.; Cicuttini F.M. Genetics of osteoarthritis // Ann. Rheum. Dis. — 1996. — Vol. 55. — P. 665—676.; Day-Williams A.G. A Variant in MCF2L Is Associated with Osteoarthritis // Am. J. Hum. Genet. — 2011. — №9. — P. 446—450.; Frey R.J., Olendorf D., Jeryan C., Boyden K. The Gale encyclopedia of medicine: osteoarthritis. — Farmington Hills, MI: Gale Research Group, 1999.; Gu J., J., F. et al. MATN3 Gene Polymorphism Is Associated with Osteoarthritis in Chinese Han Population: A Community-Based Case-Control Study [Electronic resource] // Sci. World J. — 2012. URL http://www.ncbi.nlm.nih.gov/pmc/ artic-les/PMC3432353/; Han L. TNF-а and TNF-P Polymorphisms are Associated with Susceptibility to Osteoarthritis in a Korean Population // Korean J. Pathol. — 2012. — Vol. 46. — P. 30—37.; Helminen H.J. An Inbred Line of Transgenic Mice Expressing an Internally Deleted Gene for Type 11 Procollagen (COL2A1) // J. Clin. Invest. — 1993. — Vol. 92. — P. 582—595.; Hoornaert K.P. Stickler syndrome caused by COL2A1 mutations: genotype-phenotype correlation in a series of 100 patients // Eur. J. Hum. Genet. — 2010. — №18. — P. 872—881.; Identification of new susceptibility loci for osteoarthritis (arcOGEN): a genome-wide association study // — 2012. — №9844. — P. 815—823.; Ishimori M.L. Heritability patterns in hand osteoarthritis: the ro-e of os-eophy-es // Arth-i-is Res. Ther. — 2010. — №12. — P. R180.; Jacqueline E.O. What epidemiology has told us about risk factors and aetiopathogenesis in rheumatic diseases // Arthritis Res. Ther. — 2009. — №11. — P. 223.; Jalba B.A. Alterations in expression of cartilage-specific genes for aggrecan and collagen type II in osteoarthritis // Rom. J. Morphol. Embryol. — 2011. — Vol. 52, №2. — P. 587—591.; Jordan J.M. Cartilage Oligomeric Matrix Protein as a Marker of Osteoarthritis [Electronic resource] // J. Rheumatol. — 2004. — Vol. 31. — Suppl. 70. URL: http://www.jrheum.com/ sub-cri-bers/04/70/45.html; Jung W.W. COMP and Col9A3 mutations and their relationship to the pseudoachondroplasia phenotype // Int. J. Mol. Med. — 2010. — Vol. 26. — P. 885—891.; Kerkhof H.J., Doher-y M., Arden N.K. et al. Large-sca-e-meta-analysis of interleukin-1 beta and interleukin-1 receptor antagonist polymorphisms on risk of radiographic hip and knee osteoarthritis and severity of knee osteoarthritis // Osteoarthr. Cartil. — 2011. — Vol. 19, №3. — P. 265—271.; Kerkhof H.J.M. A Genome-Wide Association Study identifies a locus on chromosome 7q22 to influence susceptibility for osteoarthritis // Arthritis Rheum. — 2010. — Vol. 62, №2. — P. 499—510.; Kerkhof H.J.M., Meulenbelt I., CarrA. et al. Common genetic variation in the Estrogen Receptor Beta (ESR2) gene and osteoarthritis: results of a meta-analysis // BMC Mol. Biol. — 2010. — №11. — P. 164.; Koelling S. Cartilage oligomeric matrix protein is involved in human limb development and in the pathogenesis of osteoarthritis // Arthritis Res. Ther. — 2006. — №8. — P. R56.; Little C.B. Matrix metalloproteinase-13 deficient mice are resistant to osteoarthritic cartilage erosion but not chondrocyte hypertrophy or osteophyte development // Arthritis Rheum. — 2009. — Vol. 60, №12. — P. 3723—3733.; Lorenz H. Early and stable upregulation of collagen type II, collagen type I and YKL40 expression levels in cartilage during early experimental osteoarthritis occurs independent of joint location and histo-ogical grading // Arthritis Res. Ther. — 2005. — №7. — P. R156—R165.; Meulenbelt I. Genetic linkage analysis of 14 candidate gene loci in a family with autosomal dominant osteoarthritis without dys-p-asia // J. Med. Genet. — 1997. — Vol. 34. — P. 1024—1027.; Murray L.W. Type 11 Collagen Defects in the Chondrodysplasias. Spondyloepiphyseal Dysplasias // Am. J. Hum. Genet. — 1989. — Vol. 45. — P. 5—15.; Nakajima M. New Sequence Variants in HLA Class II/III Region Associated with Susceptibility to Knee Osteoarthritis Identified by Genome-Wide Association Study [Electronic resource] // PLoS One. — Vol. 5, Issue 3. — e9723.; Nakki A. Allelic variants of gene associate with IL1R1 severe hand osteoarthritis // Med. Genet. — 2010. — №11. — P. 50.; Panoutsopoulou K. Insights into the genetic architecture of osteoarthritis from stage 1 of the arcOGEN study // Ann. Rheum. Dis. — 2011. — Vol. 70. — P. 864—867.; Pattrick M. HLA-A, B antigens and a1-antitrypsin phenotypes in nodal generalised osteoarthritis and erosive osteoarthritis // Ann. Rheum. Dis. — 1989. — Vol. 48. — P. 470—475.; Pirog K.A. A mouse model offers novel insights into the myopathy and tendinopathy often associated with pseudoachondroplasia and multiple epiphyseal dysplasia // Hum. Mol. Genet. — 2010. — Vol. 19, №1. — P. 52—64.; Posey K.L. RNAi Reduces Expression and Intracellular Retention of Mutant Cartilage Oligomeric Matrix Protein [Electronic resource] // PLoS One. — 2010. — Vol. 5, Issue 4. — e10302.; Reynard L.N., Louling J. Genetics and epigenetics of osteoarthritis // Maturitas. — 2012. — Vol. 71. — P. 200—204.; Sex and Ethnic Differences in the Association of ASPN, CALM1, COL2A1, COMP, and FRZB With Genetic Susceptibility to Osteoarthritis of the Knee // Arthritis Rheum. — 2007. — Vol. 56, №1. — P. 137—146.; Stecher R.M. Heberden’s nodes: the clinical characteristic of osteoarthritis of the fingers // Ann. Rheum. Dis. — 1941. — №7. — P. 1—8.; Stefa’nsson S.E. Genome-wide Scan for Hand Osteoarthritis: A Novel Mutation in Matrilin-3 // Am. J. Hum. Genet. — 2003. — Vol. 72. — P. 1448—1459.; Tawonsawatruk T. A genetic association study between growth differentiation factor 5 (GDF 5) polymorphism and knee osteoarthritis in Thai population // J. Orthop. Surg. Res. — 2011. — №6. — P. 47.; Valdes A.M. The Ile585Val TRPV1 variant is involved in risk of painful knee osteoarthritis // Ann. Rheum. Dis. — 2011. — Vol. 70. — P. 1556—1561.; Valdes A.M. Large Scale Replication Study of the Association between HLA Class II/BTNL2 Variants and Osteoarthritis of the Knee in European-Descent Populations [Electronic resource] // PLoS ONE. — 2011. — Vol. 6, Issue 8. — e23371.; Valdes A.M., Spector T.D. Genetic epidemiology of hip and knee osteoarthritis [Electronic resource] // Rheumatology. — 2011. — Vol. 7. URL: http://211. 144.68.84:9998/ 91keshi/Public/Fi-le/7/7-1/ pdf/nrrheum.2010.191.pdf; Van Meurs J.B.J, Uitterlinden A.G., Osteoarthritis year 2012 in review: genetics and genomics // Osteoarthritis and Cartilage. — 2012. — P. 1—7.; Wang Q. Identification of a central role for complement in osteoarthritis // Nat. Med. — Vol. 17, №12. — P. 1674—1679.; Zhai G., Hart D.J., Kato B.S. et al. Genetic influence on the progression of radiographic knee osteoarthritis: a longitudinal twin study // Osteoarthr. Cartil. — 2007. — Vol. 15. — P. 222—225.
-
6Academic Journal
Συγγραφείς: Горбунова, Виктория
Θεματικοί όροι: МНОГОФАКТОРНЫЕ ЗАБОЛЕВАНИЯ, ГЕНЕТИЧЕСКИЕ АССОЦИАЦИИ, ПОЛНОГЕНОМНОЕ СКАНИРОВАНИЕ, АУТОИММУННЫЕ БОЛЕЗНИ
Περιγραφή αρχείου: text/html
-
7Academic Journal
Πηγή: Педиатр.
Θεματικοί όροι: МНОГОФАКТОРНЫЕ ЗАБОЛЕВАНИЯ, ГЕНЕТИЧЕСКИЕ АССОЦИАЦИИ, ПОЛНОГЕНОМНОЕ СКАНИРОВАНИЕ, АУТОИММУННЫЕ БОЛЕЗНИ, 3. Good health
Περιγραφή αρχείου: text/html