-
1Academic Journal
Πηγή: Клиническая онкогематология, Vol 18, Iss 1 (2025)
Θεματικοί όροι: мутации в гене FLT3/NPM1, гиперэкспрессия генов BAALC, острые миелоидные лейкозы, Neoplasms. Tumors. Oncology. Including cancer and carcinogens, лейкозные гемопоэтические стволовые клетки, WT1 и EVI1, RC254-282
Σύνδεσμος πρόσβασης: https://doaj.org/article/eea55c43103b40478ed180bf3ee82b51
-
2Academic Journal
Πηγή: Клиническая онкогематология, Vol 17, Iss 2 (2024)
Θεματικοί όροι: доклиническая разработка продуктов генной и клеточной терапии, ксенографтная модель, Neoplasms. Tumors. Oncology. Including cancer and carcinogens, трансплантация, иммунодефицитные мыши NBSGW, гемопоэтические стволовые клетки, RC254-282, 3. Good health
Σύνδεσμος πρόσβασης: https://doaj.org/article/9be71239811748fbbed177b9f81ed22f
-
3Academic Journal
Συγγραφείς: Dina I. Omarova, FSBEI HE 'Omsk State Pedagogical University', Elena I. Antonova, Nauchno-issledovatel'skii tsentr fundamental'nykh i prikladnykh problem bioekologii i biotekhnologii FGBOU VO \\'Ul'ianovskii gosudarstvennyi pedagogicheskii universitet im. I.N. Ul'ianova\\', Ekaterina A. Muravikova
Πηγή: Fundamental and applied research for key propriety areas of bioecology and biotechnology; 139-152
Фундаментальные и прикладные исследования по приоритетным направлениям биоэкологии и биотехнологии; 139-152Θεματικοί όροι: 0301 basic medicine, 0303 health sciences, 03 medical and health sciences, мезенхимные стволовые клетки, ангиогенные стволовые клетки, овальные клетки, стволовый потенциал печени, гепатоциты, печень, регенерация, гемопоэтические стволовые клетки, малые гепатоциты
Περιγραφή αρχείου: text/html
-
4Academic Journal
Συγγραφείς: E. V. Galitsyna, E. A. Kulikova, Yu. A. Pavelyev, O. S. Kuznetsova, A. S. Senina, A. B. Gusev, Е. В. Галицына, Е. А. Куликова, Ю. А. Павельев, О. С. Кузнецова, А. С. Сенина, А. Б. Гусев
Συνεισφορές: This study was funded by the Ministry of Health of Russia to support the activities of the Coordinating Centre for Research and Development in Medical Science of the Russian Research Institute of Health in coordinating the implementation of the federal project Medical Science for People, Исследование проведено при финансовой поддержке Минздрава России, направленной на обеспечение деятельности координационного центра исследований и разработок в области медицинской науки ФГБУ «ЦНИИОИЗ» Минздрава России в рамках реализации федерального проекта «Медицинская наука для человека»
Πηγή: Biological Products. Prevention, Diagnosis, Treatment; Том 24, № 4 (2024); 428-442 ; БИОпрепараты. Профилактика, диагностика, лечение; Том 24, № 4 (2024); 428-442 ; 2619-1156 ; 2221-996X ; 10.30895/2221-996X-2024-24-4
Θεματικοί όροι: клинические исследования, cell-based medicinal products, tissue-engineered products, gene therapy, advanced therapy medicinal products, ATMP, mesenchymal stem cells, limbal stem cells, haematopoietic stem cells, CAR-T cell therapy, CAR-NK cell therapy, clinical trials, препараты клеточной терапии, препараты тканевой инженерии, генотерапевтические лекарственные препараты, высокотехнологичные лекарственные препараты, мезенхимальные стволовые клетки, лимбальные стволовые клетки, гемопоэтические стволовые клетки, CAR-T терапия, CAR-NK терапия
Περιγραφή αρχείου: application/pdf
Relation: https://www.biopreparations.ru/jour/article/view/557/944; https://www.biopreparations.ru/jour/article/downloadSuppFile/557/817; https://www.biopreparations.ru/jour/article/downloadSuppFile/557/824; https://www.biopreparations.ru/jour/article/downloadSuppFile/557/939; https://www.biopreparations.ru/jour/article/downloadSuppFile/557/940; https://www.biopreparations.ru/jour/article/downloadSuppFile/557/967; El-Kadiry AE, Rafei M, Shammaa R. Cell therapy: types, regulation, and clinical benefits. Front Med (Lausanne). 2021;8:756029. https://doi.org/10.3389/fmed.2021.756029; Han F, Wang J, Ding L, Hu Y, Li W, Yuan Z, et al. Tissue engineering and regenerative medicine: achievements, future, and sustainability in Asia. Front Bioeng Biotechnol. 2020;8:83. https://doi.org/10.3389/fbioe; O’Brien FJ, Duffy GP. Form and function in regenerative medicine: introduction. J Anat. 2015;227(6):705–6. https://doi.org/10.1111/joa.12401; Shumega AR, Pavlov YI, Chirinskaite AV, Rubel AA, Inge-Vechtomov SG, Stepchenkova EI. CRISPR/Cas9 as a mutagenic factor. Int J Mol Sci. 2024;25(2):823. https://doi.org/10.3390/ijms25020823; Гринев ВВ, Посредник ДВ, Северин ИН, Потапнев МП. Генетическая модификация клеток человека с помощью лентивирусной трансдукции in vitro и ex vivo. Минск: БГУ; 2010.; Wang Y, Yi H, Song Y. The safety of MSC therapy over the past 15 years: a meta-analysis. Stem Cell Res Ther. 2021;12(1):545. https://doi.org/10.1186/s13287-021-02609-x; Li C, Zhao H, Cheng L, Wang B. Allogeneic vs. autologous mesenchymal stem/stromal cells in their medication practice. Cell Biosci. 2021;11(1):187. https://doi.org/10.1186/s13578-021-00698-y; Conwit RA. Preventing familial ALS: a clinical trial may be feasible but is an efficacy trial warranted? J Neurol Sci. 2006;251(1–2):1–2. https://doi.org/10.1016/j.jns.2006.07.009; Al-Chalabi A, Leigh PN. Recent advances in amyotrophic lateral sclerosis. Curr Opin Neurol. 2000;13(4):397–405. https://doi.org/10.1097/00019052-200008000-00006; Oh KW, Noh MY, Kwon MS, Kim HY, Oh SI, Park J, et al. Repeated intrathecal mesenchymal stem cells for amyotrophic lateral sclerosis. Ann Neurol. 2018;84(3):361–73. https://doi.org/10.1002/ana.25302; Honmou O, Yamashita T, Morita T, Oshigiri T, Hirota R, Iyama S, et al. Intravenous infusion of auto serum-expanded autologous mesenchymal stem cells in spinal cord injury patients: 13 case series. Clin Neurol Neurosurg. 2021;203:106565. https://doi.org/10.1016/j.clineuro.2021.106565; Sakai D, Schol J, Foldager CB, Sato M, Watanabe M. Regenerative technologies to bed side: evolving the regulatory framework. J Orthop Translat. 2017;9:1–7. https://doi.org/10.1016/j.jot.2017.02.001; Najar M, Melki R, Khalife F, Lagneaux L, Bouhtit F, Moussa Agha D, et al. Therapeutic mesenchymal stem/stromal cells: value, challenges and optimization. Front Cell Dev Biol. 2022;9:716853. https://doi.org/10.3389/fcell.2021.716853; Brockmann I, Ehrenpfordt J, Sturmheit T, Brandenburger M, Kruse C, Zille M, et al. Skin-derived stem cells for wound treatment using cultured epidermal autografts: clinical applications and challenges. Stem Cells Int. 2018;2018:4623615. https://doi.org/10.1155/2018/4623615; Мельникова ЕВ, Меркулова ОВ, Меркулов ВА. Клинические исследования препаратов клеточной терапии: опыт рассмотрения зарубежными регуляторными органами. Вестник трансплантологии и искусственных органов. 2020;22(2):139–50. https://doi.org/10.15825/1995-1191-2020-2-139-150; Павлова ВЮ, Ливадный ЕС. Биотехнология CAR-T и новые возможности лечения опухолевых заболеваний. Клиническая онкогематология. 2021;14(1):149–56. https://doi.org/10.21320/2500-2139-2021-14-1-149-156; Grissenberger S, Salzer B, Pascoal S, Wenninger-Weinzierl A, Lehner M, Distel M. Chapter 8 — Preclinical testing of CAR T cells in zebrafish xenografts. Method Cell Biol. 2022;167:133–47. https://doi.org/10.1016/bs.mcb.2021.07.002; Sterner RC, Sterner RM. CAR-T cell therapy: current limitations and potential strategies. Blood Cancer J. 2021;11(4):69. https://doi.org/10.1038/s41408-021-00459-7; Гаврилина ОА, Галстян ГМ, Щекина АЕ, Котова ЕС, Масчан МА, Троицкая ВВ и др. Терапия Т-клетками с химерным антигенным рецептором взрослых больных В-клеточными лимфопролиферативными заболеваниями. Гематология и трансфузиология. 2022;67(1):8–28. https://doi.org/10.35754/0234-5730-2022-67-1-8-28; Gong Y, Klein Wolterink RGJ, Wang J, Bos GMJ, Germeraad WTV. Chimeric antigen receptor natural killer (CAR-NK) cell design and engineering for cancer therapy. J Hemat Oncol. 2021;14(1):73. https://doi.org/10.1186/s13045-021-01083-5; Habib S, Tariq SM, Tariq M. Chimeric antigen receptor-natural killer cells: the future of cancer immunotherapy. Ochsner J. 2019;19(3):186–7. https://doi.org/10.31486/toj.19.0033; Frangoul H, Altshuler D, Cappellini MD, Chen YS, Domm J, Eustace BK, et al. CRISPR-Cas9 gene editing for sickle cell disease and β-thalassemia. N Engl J Med. 2021;384(3):252–60. https://doi.org/10.1056/NEJMoa2031054; Киселева ЯЮ, Шишкин АМ, Иванов АВ, Кулинич ТМ, Боженко ВК. CAR-терапия солидных опухолей: перспективные подходы к модулированию противоопухолевой активности CAR-Т-лимфоцитов. Вестник РГМУ. 2019;(5):5–13. https://doi.org/10.24075/vrgmu.2019.066; Kwon SG, Kwon YW, Lee TW, Park GT, Kim JH. Recent advances in stem cell therapeutics and tissue engineering strategies. Biomater Res. 2018;22:36. https://doi.org/10.1186/s40824-018-0148-4; Паштаев НП, ред. Современные методы диагностики и хирургического лечения кератоконуса. Чебоксары; 2017. EDN: IXHREG; Gibson ALF, Holmes JH 4th, Shupp JW, Smith D, Joe V, Carson J, et al. A phase 3, open-label, controlled, randomized, multicenter trial evaluating the efficacy and safety of StrataGraft® construct in patients with deep partial-thickness thermal burns. Burns. 2021;47(5):1024–37. https://doi.org/10.1016/j.burns.2021.04.021; Heng CHY, Snow M, Dave LYH. Single-stage arthroscopic cartilage repair with injectable scaffold and BMAC. Arthrosc Tech. 2021;10(3):e751–6. https://doi.org/10.1016/j.eats.2020.10.065; Pathak S, Chaudhary D, Reddy KR, Acharya KKV, Desai SM. Efficacy and safety of CARTIGROW® in patients with articular cartilage defects of the knee joint: a four year prospective studys. Int Orthop. 2022;46(6):1313–21. https://doi.org/10.1007/s00264-022-0536; Hmadcha A, Martin-Montalvo A, Gauthier BR, Soria B, Capilla-Gonzalez V. Therapeutic potential of mesenchymal stem cells for cancer therapy. Front Bioeng Biotechnol. 2020;8:43. https://doi.org/10.3389/fbioe.2020.00043; Gimble JM, Katz AJ, Bunnel BA. Adipose-derived stem cells for regenerative medicine. Circ Res. 2014;100(9):1249–60. https://doi.org/10.1161/01.RES.0000265074.83288.09; Howard D, Buttery LD, Shakesheff KM, Roberts SJ. Tissue engineering: strategies, stem cells and scaffolds. J Anat. 2008;213(1):66–72. https://doi.org/10.1111/j.1469-7580.2008.00878.x; Рачинская ОА, Мельникова ЕВ, Меркулов ВА. Актуальные направления и риски применения препаратов на основе технологий редактирования генома. БИОпрепараты. Профилактика, диагностика, лечение. 2023;23(3):247–61. https://doi.org/10.30895/2221-996X-2023-23-3-247-261; https://www.biopreparations.ru/jour/article/view/557
-
5Academic Journal
Πηγή: Лабораторная диагностика. Восточная Европа. :431-437
Θεματικοί όροι: вирусные осложнения, viral infections, трансплантация, дети, 3. Good health, hematopoietic stem cells, дифференциальная диагностика, 03 medical and health sciences, 0302 clinical medicine, children, viral complications, differential diagnosis, гемопоэтические стволовые клетки, вирусные инфекции, transplantation
-
6Academic Journal
Συγγραφείς: N. V. Isaeva, N. V. Minaeva, S. V. Utemov, F. S. Sherstnev, N. A. Zorina, Yu. S. Zmeeva, M. A. Butolina, Н. В. Исаева, Н. В. Минаева, С. В. Утемов, Ф. С. Шерстнев, Н. А. Зорина, Ю. С. Змеева, М. А. Бутолина
Πηγή: Bulletin of Siberian Medicine; Том 22, № 2 (2023); 46-52 ; Бюллетень сибирской медицины; Том 22, № 2 (2023); 46-52 ; 1819-3684 ; 1682-0363 ; 10.20538/1682-0363-2023-22-2
Θεματικοί όροι: диметилсульфоксид, viability, 7-aminoactinomycin D, mononuclear cells, hematopoietic stem cells, dimethyl sulfoxide, жизнеспособность, 7-аминоактиномицин D, ядросодержащие клетки, гемопоэтические стволовые клетки
Περιγραφή αρχείου: application/pdf
Relation: https://bulletin.ssmu.ru/jour/article/view/5219/3392; https://bulletin.ssmu.ru/jour/article/view/5219/3415; Donnenberg V.S., Ulrich H., Tárnok A. Cytometry in Stem Cell Research and Therapy. Cytometry A. 2013; 83(1): 1–4. DOI:10.1002/cyto.a.22243.; Passweg J.R., Baldomero H., Bader P., Bonini C., Cesaro S., Dreger P., Duarte R.F., Dufour C., Kuball J., Farge-Bancel D., Gennery A., Kröger N., Lanza F., Nagler A., Sureda A. and Mohty M. Hematopoietic stem cell transplantation in Europe 2014: more than 40000 transplants annually. Bone Marrow Transplantation. 2016; 51: 786–792. DOI:10.1038/bmt.2016.2.; Galmes A., Gutierrez A., Sampol A., Canaro M., Morey M., Iglesias J., Matamoros N., Duran M. А., Novo А., Bea M. D., Galan P., Balansat J., Martínez J., Bargay J., Besalduch J. Long-term hematological reconstitution and clinical evaluation of autologous peripheral blood stem cell transplantation after cryopreservation of cells with 5% and 10% dimethyl sulfoxide at – 80 degrees C in a mechanical freezer. Haematologica. 2007; 92: 986 – 989. DOI:10.3324/haematol.11060.; Логинова М.А., Малышева Н.А., Минаева Н.В., Парамонов И.В. Оценка эффективности деятельности регистра потенциальных доноров гемопоэтических стволовых клеток. Гематология и трансфузиология. 2020; 3 (65): 291-298. DOI:10.35754/0234-5730-2020-65-3-291-298.; Barnett D., Granger V., Kraan J., Whitby L., Reilly J.T., Papa S., Gratama J.W. Reduction of intra- and interlaboratory variation in CD34- stem cell enumeration using stable test material, standard protocols and targeted training. Br J Haematol. 2000; 108 (3):784 – 792. DOI:10.1046/j.1365-214.; Saraceni F., Shem-Tov N., Olivieri A., Nagler A. Mobilized peripheral blood grafts include more than hematopoietic stem cells: the immunological perspective. Bone Marrow Transplantation. 2015; 50(7): 886–891. DOI:10.1038/bmt.2014.330.; López M.C., Lawrence D. A. Proficiency testing experience for viable CD34+ stem cell analysis. Transfusion. 2008; 48(6): 1115-1121. DOI:10.1111/j.1537-2995.2008.01652.x.; Briard J.G., Jahan S., Chandran P., Allan D., Pineault N., Ben R.N. Small-Molecule Ice Recrystallization Inhibitors Improve the Post-Thaw Function of Hematopoietic Stem and Progenitor Cells. ACS Omega. 2016; 1(5): 1010-1018. DOI:10.1021/acsomega.6b00178.; Wagner T., Guber S.E., Stubenrauch M.-L., Lanzer G. Low propidium iodide intensity in flow cytometric white blood cell counting as a marker of cell destruction? Transfusion. 2005; 45 (2): 228-233. DOI:10.1111/j.1537-2995.; Трусов Г.А., Чапленко А.А., Семенова И.С., Мельникова Е.В., Олефир Ю.В. Применение проточной цитометрии для оценки качества биомедицинских клеточных продуктов. Биопрепараты. Профилактика, диагностика, лечение. 2018; 18(1): 16–24. DOI:10.30895/2221-996X-2018-18-1-16-24.; Fernández M. L., Reigada R. Effects of Dimethyl Sulfoxide on Lipid Membrane Electroporation. The Journal of Physical Chemistry B 2014, 118 (31), 9306-9312. DOI:10.1021/jp503502s.; Smagur A., Mitrus I, Giebel S, Sadus-Wojciechowska M., Najda J., Kruzel T., Czerw T., Gliwinska J., Prokop M., Glowala-Kosinska M, Chwieduk A., Holowiecki J. Smugar, I. Impact of different dimethyl sulphoxide concentrations on cell recovery, viability and clonogenic potential of cryopreserved peripheral blood hematopoietic stem and progenitor cells. Vox Sang. 2013; 104 (3): 240-247. DOI:10.1111/j.1423-0410.2012.01657.x.; Curcoy A.I., Alcorta I., Estella J., Rives S., Toll T., Tuset E. Cryopreservation of HPCs with high cell concentration in 5-percent DMSO for transplantation to children. Transfusion. 2002; 42: 962. DOI:10.1046/j.1525-1438.2002.00198.x.; Abrahamsen J.F., Rusten L., Bakken A. M., Bruserud O. Better preservation of early hematopoietic progenitor cells when human peripheral blood progenitor cells are cryopreserved with 5 percent dimethylsulfoxide instead of 10 percent dimethylsulfoxide. Transfusion. 2004; 44: 785 – 789. DOI:10.1111/j.1537-2995.2004.03336.x.; Akkok CA, Liseth K, Hervig T, Ryningen A, Bruserud O., Ersvaer E. Use of different DMSO concentrations for cryopreservation of autologous peripheral blood stem cell grafts does not have any major impact on levels of leukocyte- and platelet-derived soluble mediators. Cytotherapy. 2009; 11: 749 – 760. DOI:10.1080/14653240902980443.; Kollerup M.B, Hilscher M., Zetner D., Rosenberg J. Adverse reactions of dimethyl sulfoxide in humans: a systematic review. F1000Research.2018; 7: 1-18.DOI:10.12688/f1000research.16642.2.; Tonev I., Simeonov S., Mitkov I., Ilieva M., Petrov Y., Ganeva P., Arnaudov G., Spassov B., Mincheff M. Viability of hematopoetic stem cells following storage at – 80 o C with 5 % dimethylsulfoxide and hematologic recovery in transplanted myeloma patients. HemaSphere. 2019; 3: 343-344. DOI:10.1097/01.hs9.0000561400.99877.49.4.; Shu Z, Heimfeld S, Gao D. Hematopoietic SCT with cryopreserved grafts: adverse reactions after transplantation and cryoprotectant removal before infusion. Bone Marrow Transplant. 2014; 49(4): 469–476. DOI:10.1038/bmt.2013.152.; Gutensohn K1, Jessen M, Ketels A, Gramatzki M, Humpe A. Flow cytometric analyses of CD34+ cells with inclusion of internal positive controls. Transfusion. 2012; 2 (52): 284-290. DOI:10.1111/j.1537-2995.2011.03259.x.; Bai L, Xia W, Wong K, Reid C, Ward C, Greenwood M. Infused neutrophil dose and haematopoietic recovery in patients undergoing autologous transplantation. Bone Marrow Transplant. 2014; 49(5): 725. DOI:10.1038/bmt.2014.14.; https://bulletin.ssmu.ru/jour/article/view/5219
-
7Academic Journal
Συγγραφείς: D. S. Dubnyak, N. V. Risinskaya, M. Yu. Drokov, A. B. Sudarikov, Д. С. Дубняк, Н. В. Рисинская, М. Ю. Дроков, А. Б. Судариков
Πηγή: Transplantologiya. The Russian Journal of Transplantation; Том 14, № 4 (2022); 488-499 ; Трансплантология; Том 14, № 4 (2022); 488-499 ; 2542-0909 ; 2074-0506
Θεματικοί όροι: аллогенные гемопоэтические стволовые клетки, трансплантация, химеризм после трансплантации, transplantation, сhimerism after transplantation
Περιγραφή αρχείου: application/pdf
Relation: https://www.jtransplantologiya.ru/jour/article/view/710/734; https://www.jtransplantologiya.ru/jour/article/view/710/745; Owen RD. Immunogenetic consequences of vascular anastomoses between bovine twins. Science. 1945;102(2651):400–401. PMID: 17755278 https://doi.org/10.1126/science.102.2651.400; Anderson D, Billingham RE, Lampkin GH, Medawar PB. The use of skin grafting to distinguish between monozygotic and dizygotic twins in cattle. Heredity (Edinb). 1951;5(3):379–397. https://doi.org/10.1038/hdy.1951.38; Ford CE, Hamerton JL, Barnes DWH, Loutit JF. Cytological identification of radiation-chimæras. Nature. 1956;177(4506):452–454. PMID: 13309336 https://doi.org/10.1038/177452a0; Thomas ED, Lochte HL, Cannon JH, Sahler OD. Supralethal whole body irradiation and isologous marrow transplantation in man. J Clin Invest. 1959;38(10 Pt1-2):1709–1716. PMID: 13837954 https://doi.org/10.1172/JCI103949; Khan F, Agarwal A, Agrawal S. Significance of chimerism in hematopoietic stem cell transplantation: New variations on an old theme. Bone Marrow Transplantation. 2004;34(1):1–12. PMID: 15156163 https://doi.org/10.1038/sj.bmt.1704525; Clark JR, Scott SD, Jack AL, Lee H, Mason J, Carter GI, et al. Monitoring of chimerism following allogeneic haemato-poietic stem cell transplantation (HSCT): technical recommendations for the use of short tandem repeat (STR) based techniques, on behalf of the United Kingdom national external quality assessment service for leucocyte immunophenotyping chimerism working group. Br J Haematol. 2015;168(1):26–37. PMID: 25145701 https://doi.org/10.1111/bjh.13073; van Dijk BA, Drenthe-Schonk AM, Bloo A, Kunst VA, Janssen JT, Witte TJ. Erythrocyte repopulation after allogeneic bone marrow transplantation: analysis using erythrocyte antigens. Transplantation. 1987;44(5):650–654. PMID: 3318035 https://doi.org/10.1097/00007890198711000-00011; Hendriks EC, De Man AJ, Van Berkel YC, Stienstra S, Witte T. Flow cytometric method for the routine follow-up of red cell populations after bone marrow transplantation. Br J Haematol. 1997;97(1):141–145. PMID: 9136956 https://doi.org/10.1046/j.1365-2141.1997.d01-2138.x; Andreani M, Testi M, Battarra M, Lucarelli G. Split chimerism between nucleated and red blood cells after bone marrow transplantation for haemoglobinopathies. Chimerism. 2011;2(1):21–22. PMID: 21547033 https://doi.org/10.4161/chim.15057; Buño I, Nava P, Simón A, GonzálezRivera M, Jiménez JL, Balsalobre P, et al. A comparison of fluorescent in situ hybridization and multiplex short tandem repeat polymerase chain reaction for quantifying chimerism after stem cell transplantation. Haematologica. 2005;90(10):1373–1379. PMID: 16219574; Alizadeh M, Bernard M, Danic B, Dauriac C, Birebent B, Lapart C, et al. Quantitative assessment of hematopoietic chimerism after bone marrow transplantation by real-time quantitative polymerase chain reaction. Blood. 2002;99(12):4618–4625. PMID: 12036896 https://doi.org/10.1182/blood.v99.12.4618; Jółkowska J, Pieczonka A, Strabel T, Boruczkowski D, Wachowiak J, Bader P, et al. Hematopoietic chimerism after allogeneic stem cell transplantation: a comparison of quantitative analysis by automated DNA sizing and fluorescent in situ hybridization. BMC Blood Disord. 2005;5(1):1. PMID: 15642114 https://doi. org/10.1186/1471-2326-5-1; Dewald G, Stallard R, Saadi AA, Arnold S, Bader PI, Blough R, et al. A multicenter investigation with interphase fluorescence in situ hybridization using Xand Y-chromosome probes. Am J Med Genet. 1998;76(4):318–326. PMID: 9545096; Thiede C, Bornhäuser M, Ehninger G. Strategies and clinical implications of chimerism diagnostics after allogeneic hematopoietic stem cell transplantation. Acta Haematologica. 2004;112(1– 2):16–23. PMID: 15179000 https://doi.org/10.1159/000077555; Kristt D, Stein J, Yaniv I, Klein T. Assessing quantitative chimerism longitudinally: technical considerations, clinical applications and routine feasibility. Bone Marrow Transplant. 2007;39(5):255–268. PMID: 17262064 https://doi.org/10.1038/sj.bmt.1705576; Andrikovics H, Őrfi Z, Meggyesi N, Bors A, Varga L, Kövy P, et al. Current trends in applications of circulatory microchimerism detection in transplantation. Int J Mol Sci. 2019;20(18):4450. PMID: 31509957 https://doi.org/10.3390/ijms20184450; Bach C, Tomova E, Goldmann K, Weisbach V, Roesler W, Mackensen A, et al. Monitoring of hematopoietic chimerism by real-time quantitative PCR of micro insertions/deletions in samples with low DNA quantities. Transfus Med Hemother. 2015;42(1):38–45. PMID: 25960714 https://doi.org/10.1159/000370255; Fan H, Chu JY. A brief review of short tandem repeat mutation. Genomics, Proteomics Bioinformatics. 2007;5(1):7–14. PMID: 17572359 https://doi.org/10.1016/S1672-0229(07)60009-6; Nollet F, Billiet J, Selleslag D, Criel A. Standardisation of multiplex fluorescent short tandem repeat analysis for chimerism testing. Bone Marrow Transplant. 2001;28(5):511–518. PMID: 11593326 https://doi.org/10.1038/sj.bmt.1703162; Blouin AG, Ye F, Williams J, Askar M. A practical guide to chimerism analysis: review of the literature and testing practices worldwide. Hum Immunol. 2021;82(11):838–849. PMID: 34404545 https://doi.org/10.1016/j.humimm.2021.07.013; Stahl T, Böhme MU, Kröger N, Fehse B. Digital PCR to assess hematopoietic chimerism after allogeneic stem cell transplantation. Exp Hematol. 2015;43(6):462–468.e1. PMID: 25795523 https://doi.org/10.1016/j.exph.2015.02.006; Kletzel M, Huang W, Olszewski M, Khan S. Validation of chimerism in pediatric recipients of allogeneic hematopoietic stem cell transplantation (HSCT) a comparison between two methods: realtime PCR (qPCR) vs. variable number tandem repeats PCR (VNTR PCR). Chimerism. 2013;4(1):1–8. PMID: 23238335 https://doi.org/10.4161/chim.23158; Quan PL, Sauzade M, Brouzes E. DPCR: a technology review. Sensors (Switzerland). 2018;18(4):1271. PMID: 29677144 https://doi.org/10.3390/s18041271; Basu AS. Digital assays part I: partitioning statistics and digital PCR. SLAS Technology. 2017;22(4):369–386. PMID: 28448765 https://doi.org/10.1177/2472630317705680; Das TP, Kipp DA, Kliman DS, Patil SS, Curtis DJ, O'Brien ME, et al. Important factors in implementation of lineage-specific chimerism analysis for routine use. Bone Marrow Transplantat. 2021;56(4):946–948. PMID: 33082555 https://doi.org/10.1038/s41409-02001089-6; Bader P. Documentation of engraftment and chimerism after HSCT. Chapter 20. In: Carreras E, Dufour C, Mohty M, Kröger N. The EBMT handbook: hematopoietic stem cell transplantation and cellular therapies. 7th edition. Cham (CH): Springer; 2019. p. 143–147. https://doi.org/10.1007/978-3-030-02278-5_20; Sellmann L, Rabe K, Bünting I, Dammann E, Göhring G, Ganser A, et al. Diagnostic value of highly-sensitive chimerism analysis after allogeneic stem cell transplantation. Bone Marrow Transplant. 2018;53(11):1457–1465. PMID: 29720704 https://doi.org/10.1038/s41409-018-0176-7; Miura Y, Tanaka J, Toubai T, Tsutsumi Y, Kato N, Hirate D, et al. Analysis of donor-type chimerism in lineage-specific cell populations after allogeneic myeloablative and nonmyeloablative stem cell transplantation. Bone Marrow Transplant. 2006;37(9):837–843. PMID: 16547484 https://doi.org/10.1038/sj.bmt.1705352; Gineikiene E, Stoskus M, Griskevicius L. Recent advances in quantitative chimerism analysis. Expert Rev Mol Diagn. 2009;9(8):817–832. PMID: 19895227 https://doi.org/10.1586/erm.09.66; Lawler M, McCann SR, Marsh JCW, Ljungman P, Hows J, Vandenberghe E, et al. Serial chimerism analyses indicate that mixed haemopoietic chimerism influences the probability of graft rejection and disease recurrence following allogeneic stem cell transplantation (SCT) for severe aplastic anaemia (SAA): indication for routine assessment of chimerism post SCT for SAA. Br J Haematol. 2009;144(6):933–945. PMID: 19183198 https://doi.org/10.1111/j.13652141.2008.07533.x; Zimmerman C, Shenoy S. Chimerism in the realm of hematopoietic stem cell transplantation for non-malignant disorders – a perspective. Front Immunol. 2020;11:1791. PMID: 32903736 https://doi.org/10.3389/fimmu.2020.01791; Navarro-Bailón A, Carbonell D, Escudero A, Chicano M, Muñiz P, SuárezGonzález J, et al. Short tandem repeats (STRS) as biomarkers for the quantitative follow-up of chimerism after stem cell transplantation: methodological considerations and clinical application. Genes (Basel). 2020;11(9):993. PMID: 32854376 https://doi.org/10.3390/genes11090993; Stumph J, Vnencak-Jones CL, Koyama T, Frangoul H. Comparison of peripheral blood and bone marrow samples for detection of post transplant mixed chimerism. Bone Marrow Transplant. 2008;41(6):589–590. PMID: 18037938 https://doi.org/10.1038/sj.bmt.1705938; Rauwerdink CA, Tsongalis GJ, Tosteson TD, Hill JM, Meehan KR. The practical application of chimerism analyses in allogeneic stem cell transplant recipients: blood chimerism is equivalent to marrow chimerism. Exp Mol Pathol. 2012;93(3):339–344. PMID: 22850633 https://doi.org/10.1016/j.yexmp.2012.07.003; Bach C, Steffen M, Roesler W, Winkler J, Mackensen A, Stachel K-D, et al. Systematic comparison of donor chimerism in peripheral blood and bone marrow after hematopoietic stem cell transplantation. Blood Cancer J. 2017;7(6):e566. PMID: 28574489 https://doi.org/10.1038/bcj.2017.42; Reshef R, Hexner EO, Loren AW, Frey NV, Stadtmauer EA, Luger SM, et al. Early donor chimerism levels predict relapse and survival after allogeneic stem cell transplantation with reducedintensity conditioning. Biol Blood Marrow Transplant. 2014;20(11):1758– 1766. PMID: 25016197 https://doi.org/10.1016/j.bbmt.2014.07.003; Jain T, Kunze KL, Mountjoy L, Partain DK, Kosiorek H, Khera N, et al. Early post-transplantation factors predict survival outcomes in patients undergoing allogeneic hematopoietic cell transplantation for myelofibrosis. Blood Cancer J. 2020;10(3):36. PMID: 32157091 https://doi.org/10.1038/s41408-020-0302-9; Блау О.В. Химеризм после аллогенной трансплантации гемопоэтических стволовых клеток. Клиническая онкогематология. Фундаментальные исследования и клиническая практика. 2013;6(1):34–39.; Lamba R, Abella E, Kukuruga D, Klein J, Savasan S, Abidi MH, et al. Mixed hematopoietic chimerism at day 90 following allogenic myeloablative stem cell transplantation is a predictor of relapse and survival. Leukemia. 2004;18(10):1681–1686. PMID: 15318247 https://doi.org/10.1038/sj.leu.2403468; Koreth J, Kim HT, Nikiforow S, Milford EL, Armand P, Cutler C, et al. Donor chimerism early after reducedintensity conditioning hematopoietic stem cell transplantation predicts relapse and survival. Biol Blood Marrow Transplant. 2014;20(10):1516–1521. PMID: 24907627 https://doi.org/10.1016/j.bbmt.2014.05.025; Bacher U, Haferlach T, Fehse B, Schnittger S, Kröger N. Minimal residual disease diagnostics and chimerism in the post-transplant period in acute myeloid leukemia. Scientific World Journal. 2011;11:310–319. PMID: 21298222 https://doi.org/10.1100/tsw.2011.16; Mountjoy L, Palmer J, Kunze KL, Khera N, Sproat LZ, Leis JF, et al. Does early chimerism testing predict outcomes after allogeneic hematopoietic stem cell transplantation? Leuk Lymphoma. 2021;62(1):252–254. PMID: 33012186 https://doi.org/10.1080/10428194.2020.1827249; Deeg HJ, Salit RB, Monahan T, Schoch G, McFarland C, Scott BL, et al. Early mixed lymphoid donor/host chimerism is associated with improved transplant outcome in patients with primary or secondary myelofibrosis: mixed chimerism, GVHD, and relapse. Biol Blood Marrow Transplant. 2020;26(12):2197–2203. PMID: 32693211 https://doi.org/10.1016/j.bbmt.2020.07.013; Breuer S, Preuner S, Fritsch G, Daxberger H, Koenig M, Poetschger U, et al. Early recipient chimerism testing in the Tand NK-cell lineages for risk assessment of graft rejection in pediatric patients undergoing allogeneic stem cell transplantation. Leukemia. 2012;26(3):509–519. PMID: 21926962 https://doi.org/10.1038/leu.2011.244; Baron F, Baker JE, Storb R, Gooley TA, Sandmaier BM, Maris MB, et al. Kinetics of engraftment in patients with hematologic malignancies given allogeneic hematopoietic cell transplantation after nonmyeloablative conditioning. Blood. 2004;104(8):2254–2262. PMID:15226174 https://doi.org/10.1182/blood-2004-04-1506; Bornhäuser M, Thiede C, Platzbecker U, Jenke A, Helwig A, Plettig R, et al. Dose-reduced conditioning and allogeneic hematopoietic stem cell transplantation from unrelated donors in 42 patients. Clin Cancer Res. 2001;7(8):2254–2262. PMID: 11489799; Rosenow F, Berkemeier A, Krug U, Müller-Tidow C, Gerss J, Silling G, et al. CD34+ lineage specific donor cell chimerism for the diagnosis and treatment of impending relapse of AML or myelodysplastic syndrome after allo-SCT. Bone Marrow Transplant. 2013;48(8):1070–1076. PMID: 23376821 https://doi.org/10.1038/bmt.2013.2; Jiang Y, Wan L, Qin Y, Wang X, Yan S, Xie K, et al. Donor chimerism of B cells and nature killer cells provides useful information to predict hematologic relapse following allogeneic hematopoietic stem cell transplantation. PLoS One. 2015;10(7):e0133671. PMID: 26226104 https://doi.org/10.1371/journal.pone.0133671; Yang Y-N, Wang X, Qin Y, Wan L, Jiang Y, Wang C. Is there a role for B lymphocyte chimerism in the monitoring of B-acute lymphoblastic leukemia patients receiving allogeneic stem cell transplantation? Chronic Dis Transl Med. 2015;1(1):48–54. PMID: 29062987 https://doi.org/10.1016/j.cdtm.2015.02.004; Hsieh MM, Fitzhugh CD, Tisdale JF. Allogeneic hematopoietic stem cell transplantation for sickle cell disease: the time is now. Blood. 2011;118(5):1197– 1207. PMID: 21628400 https://doi. org/10.1182/blood-2011-01-332510; Bornhäuser M, Oelschlaegel U, Platzbecker U, Bug G, Lutterbeck K, Kiehl MG, et al. Monitoring of donor chimerism in sorted CD34+ peripheral blood cells allows the sensitive detection of imminent relapse after allogeneic stem cell transplantation. Haematologica. 2009;94(11):1613–1617. PMID: 19880783 https://doi.org/10.3324/haematol.2009.007765; Broglie L, Helenowski I, Jennings LJ, Schafernak K, Duerst R, Schneiderman J, et al. Early mixed T-cell chimerism is predictive of pediatric AML or MDS relapse after hematopoietic stem cell transplant. Pediatr Blood Cancer. 2017;64(9):e26493. PMID: 28266766 https://doi.org/10.1002/pbc.26493; Lee HC, Saliba RM, Rondon G, Chen J, Charafeddine Y, Medeiros LJ, et al. Mixed T lymphocyte chimerism after allogeneic hematopoietic transplantation is predictive for relapse of acute myeloid leukemia and myelodysplastic syndromes. Biol Blood Marrow Transplant. 2015;21(11):1948–1954. PMID: 26183077 https://doi.org/10.1016/j.bbmt.2015.07.005; El-Cheikh J, Vazquez A, Crocchiolo R, Furst S, Calmels B, Castagna L, et al. Acute GVHD is a strong predictor of full donor CD3+ T cell chimerism after reduced intensity conditioning allogeneic stem cell transplantation. Am J Hematol. 2012;87(12):1074–1078. PMID: 22911907 https://doi.org/10.1002/ajh.23319; Mattsson J, Uzunel M, Remberger M, Ringdén O. T cell mixed chimerism is significantly correlated to a decreased risk of acute graft-versus-host disease after allogeneic stem cell transplantation. Transplantation. 2001;71(3):433–439. PMID: 11233907 https://doi.org/10.1097/00007890-200102150-00017; Baron F, Little MT, Storb R. Kinetics of engraftment following allogeneic hematopoietic cell transplantation with reduced-intensity or nonmyeloablative conditioning. Blood Rev. 2005;19(3):153–164. PMID: 15748963 https://doi.org/10.1016/j.blre.2004.06.003; Antin JH, Childs R, Filipovich AH, Giralt S, Mackinnon S, Spitzer T, et al. Establishment of complete and mixed donor chimerism after allogeneic lymphohematopoietic transplantation: recommendations from a workshop at the 2001 Tandem Meetings of the International Bone Marrow Transplant Registry and the American Society of Blood and Marrow Transplantation. Biol Blood Marrow Transplant. 2001;7(9):473–485. PMID: 11669214 https://doi.org/10.1053/bbmt.2001.v7.pm11669214; Zvyagin IV, Mamedov IZ, Tatarinova OV, Komech EA, Kurnikova EE, Boyakova EV, et al. Tracking T-cell immune reconstitution after TCR/ CD19-depleted hematopoietic cells transplantation in children. Leukemia. 2017;31(5):1145–1153. PMID: 27811849 https://doi.org/10.1038/leu.2016.321; Попова Н.Н., Савченко В.Г. Реконституция Т-клеточного звена иммунной системы у больных после трансплантации аллогенных гемопоэтических стволовых клеток. Гематология и трансфузиология. 2020;65(1):24–38.; Михальцова Е.Д., Попова Н.Н., Дроков М.Ю., Капранов Н.М., Давыдова Ю.О., Васильева В.А. и др. Влияние режимов профилактики РТПХ на восстановление клеточного звена иммунной системы у пациентов после трансплантации аллогенных гемопоэтических стволовых клеток. Медицинская иммунология. 2021;23(5):1125–1136.https://doi.org/10.15789/1563-0625-IOG-2167; https://www.jtransplantologiya.ru/jour/article/view/710
-
8Academic Journal
Συγγραφείς: O. I. Kit, G. V. Zhukova, A. Yu. Maksimov, A. S. Goncharova, E. Yu. Zlatnik, I. A. Novikova, E. A. Lukbanova, О. И. Кит, Г. В. Жукова, А. Ю. Максимов, А. С. Гончарова, Е. Ю. Златник, И. А. Новикова, Е. А. Лукбанова
Πηγή: Siberian journal of oncology; Том 20, № 6 (2021); 141-150 ; Сибирский онкологический журнал; Том 20, № 6 (2021); 141-150 ; 2312-3168 ; 1814-4861 ; 10.21294/1814-4861-2021-20-6
Θεματικοί όροι: сублетальное облучение, humanization of immunodeficient animals, white blood cells, hematopoietic stem cells, sublethal irradiation, гуманизация иммунодефицитных животных, лейкоциты, гемопоэтические стволовые клетки
Περιγραφή αρχείου: application/pdf
Relation: https://www.siboncoj.ru/jour/article/view/1997/940; Williams J.A. Using PDX for Preclinical Cancer Drug Discovery: The Evolving Field. J Clin Med. 2018 Mar 2; 7(3): 41. doi:10.3390/jcm7030041.; De La Rochere P., Guil-Luna S., Decaudin D., Azar G., Sidhu S.S., Piaggio E. Humanized Mice for the Study of Immuno-Oncology. Trends Immunol. 2018 Sep; 39(9): 748–763. doi:10.1016/j.it.2018.07.001.; Wege A.K. Humanized Mouse Models for the Preclinical Assessment of Cancer Immunotherapy. BioDrugs. 2018; 32(3): 245–66. doi:10.1007/s40259-018-0275-4.; Каркищенко Н.Н., Рябых В.П., Каркищенко В.Н., Колоскова Е.М. Создание гуманизированных мышей для фармакотоксикологических исследований (успехи, неудачи и перспективы). Биомедицина. 2014; (3): 4–22.; Landgraf M., McGovern J.A., Friedl P., Hutmacher D.W. Rational Design of Mouse Models for Cancer Research. Trends Biotechnol. 2018 Mar; 36(3): 242–251. doi:10.1016/j.tibtech.2017.12.001.; Zhou Q., Facciponte J., Jin M., Shen Q., Lin Q. Humanized NODSCID IL2rg–/– mice as a preclinical model for cancer research and its potential use for individualized cancer therapies. Cancer Lett. 2014 Mar 1; 344(1): 13–19. doi:10.1016/j.canlet.2013.10.015.; Smith D.J., Lin L.J., Moon H., Pham A.T., Wang X., Liu S., Ji S., Rezek V., Shimizu S., Ruiz M., Lam J., Janzen D.M., Memarzadeh S., Kohn D.B., Zack J.A., Kitchen S.G., An D.S., Yang L. Propagating Humanized BLT Mice for the Study of Human Immunology and Immunotherapy. Stem Cells Dev. 2016 Dec 15; 25(24): 1863–1873. doi:10.1089/scd.2016.0193.; Jespersen H., Lindberg M.F., Donia M., Söderberg E.M.V., Andersen R., Keller U., Ny L., Svane I.M., Nilsson L.M., Nilsson J.A. Clinical responses to adoptive T-cell transfer can be modeled in an autologous immune-humanized mouse model. Nat Commun. 2017 Sep; 8(1): 707. doi:10.1038/s41467-017-00786-z.; Murphy A.J., Macdonald L.E., Stevens S., Karow M., Dore A.T., Pobursky K., Huang T.T., Poueymirou W.T., Esau L., Meola M., Mikulka W., Krueger P., Fairhurst J., Valenzuela D.M., Papadopoulos N., Yancopoulos G.D. Mice with megabase humanization of their immunoglobulin genes generate antibodies as efficiently as normal mice. Proc Natl Acad Sci U S A. 2014 Apr 8; 111(14): 5153–8. doi:10.1073/pnas.1324022111.; Kersten K., de Visser K.E., van Miltenburg M.H., Jonkers J. Genetically engineered mouse models in oncology research and cancer medicine. EMBO Mol Med. 2017 Feb; 9(2): 137–153. doi:10.15252/emmm.201606857.; Холоденко И.В., Доронин И.И., Холоденко Р.В. Опухолевые модели в изучении онкологических заболеваний. Иммунология. 2013; 5: 282–286.; Céspedes M.V., Casanova I., Parreño M., Mangues R. Mouse models in oncogenesis and cancer therapy. Clin Transl Oncol. 2006 May; 8(5): 318–29. doi:10.1007/s12094-006-0177-7.; Medler T.R., Cotechini T., Coussens L.M. Immune response to cancer therapy: mounting an effective antitumor response and mechanisms of resistance. Trends Cancer. 2015 Sep 1; 1(1): 66–75. doi:10.1016/j.trecan.2015.07.008.; Zhukova G.V., Shikhliarova A.I., Soldatov A.V., Barteneva T.A., Petrosian V.I., Gudtskova T.N., Bragina M.I., Polozhentsev O.E., Sheiko E.A., Maschenko N.M., Shirnina E.A., Zlatnik E.Y., Kurkina T.A. Some Approaches to Activation of Antitumor Resistance Mechanisms and Functional Analogs in Categories of Synergetics. Biofizika. 2016 MarApr; 61(2): 359–73.; Morton J.J., Bird G., Refaeli Y., Jimeno A. Humanized Mouse Xenograft Models: Narrowing the Tumor-Microenvironment Gap. Cancer Res. 2016 Nov 1; 76(21): 6153–6158. doi:10.1158/0008-5472.CAN-16-1260.; Morton J.J., Bird G., Refaeli Y., Jimeno A. Humanized Mouse Xenograft Models: Narrowing the Tumor-Microenvironment Gap. Cancer Res. 2016; 76(21): 6153–6158. doi:10.1158/0008-5472.CAN-16-1260.; Bracci L., Schiavoni G., Sistigu A., Belardelli F. Immune-based mechanisms of cytotoxic chemotherapy: implications for the design of novel and rationale-based combined treatments against cancer. Cell Death Differ. 2014 Jan; 21(1): 15–25. doi:10.1038/cdd.2013.67.; Kähkönen T.E., Suominen M.I., Halleen J.M., Haapaniemi T., Tanaka A., Seiler M., Bernoulli J. Humanized mouse models of triplenegative and triple-positive breast cancer for preclinical validation of novel immuno-oncology therapies. Eur J Cancer. 2018; 92: S7‒S8. doi:10.1016/j.ejca.2018.01.020.; Scadden D., Silberstein L. Hematology: Basic Principles and Practice, Chapter 11, 119-12 Hematopoietic Microenvironment. 7 Ed. Elsevier, 2018. 2408 p.; Holzapfel B.M., Thibaudeau L., Hesami P. Humanised xenograft models of bone metastasis revisited: novel insights into species-specific mechanisms of cancer cell osteotropism. Cancer Metastasis Rev. 2013; 32: 129–135. doi:10.1007/s10555-013-9437-5.; Bosma G.C., Custer R.P., Bosma M.J. A severe combined immunodeficiency mutation in the mouse. Nature. 1983 Feb 10; 301(5900): 527–30. doi:10.1038/301527a0.; Xie X., Brünner N., Jensen G., Albrectsen J., Gotthardsen B., Rygaard J. Comparative studies between nude and scid mice on the growth and metastatic behavior of xenografted human tumors. Clin Exp Metastasis. 1992 May; 10(3): 201–10. doi:10.1007/BF00132752.; Shultz L.D., Ishikawa F., Greiner D.L. Humanized mice in translational biomedical research. Nat Rev Immunol. 2007 Feb; 7(2): 118–30. doi:10.1038/nri2017.; Ito M., Hiramatsu H., Kobayashi K., Suzue K., Kawahata M., Hioki K., Ueyama Y., Koyanagi Y., Sugamura K., Tsuji K., Heike T., Nakahata T. NOD/SCID/gamma(c)(null) mouse: an excellent recipient mouse model for engraftment of human cells. Blood. 2002 Nov 1; 100(9): 3175–82. doi:10.1182/blood-2001-12-0207.; Панков Д.Д., Румянцев А.Г. Оптимизация экспериментальных моделей заболевания лейкозом у человека (обзор литературы). Онкогематология. 2012; (4): 48–52.doi:10.17650/1818-8346-2012-7-4-48-52.; Pearson T., Greiner D.L., Shultz L.D. Creation of «humanized» mice to study human immunity. Curr Protoc Immunol. 2008 May; Chapter 15: Unit 15.21. doi:10.1002/0471142735.im1521s81.; Трещалина Е.М. Иммунодефицитные мыши balb/c nude и моделирование различных вариантов опухолевого роста для доклинических исследований. Российский биотерапевтический журнал. 2017; 16(3): 6–13. doi:10.17650/1726-9784-2017-16-3-6-13.; Pompili L., Porru M., Caruso C., Biroccio A., Leonetti C. Patientderived xenografts: a relevant preclinical model for drug development. J Exp Clin Cancer Res. 2016; 35: 189. doi:10.1186/s13046-016-0462-4.; Chen P., Huang Y., Womer K.L. Effects of mesenchymal stromal cells on human myeloid dendritic cell differentiation and maturation in a humanized mouse model. J Immunol Methods. 2015 Dec; 427: 100–4. doi:10.1016/j.jim.2015.10.008.; DeRose Y.S., Wang G., Lin Y.C., Bernard P.S., Buys S.S., Ebbert M.T., Factor R., Matsen C., Milash B.A., Nelson E., Neumayer L., Randall R.L., Stijleman I.J., Welm B.E., Welm A.L. Tumor grafts derived from women with breast cancer authentically reflect tumor pathology, growth, metastasis and disease outcomes. Nat Med. 2011 Oct; 17(11): 1514–20. doi:10.1038/nm.2454.; Moser J., van Ark J., van Dijk M.C., Greiner D.L., Shultz L.D., van Goor H., Hillebrands J.L. Distinct Differences on Neointima Formation in Immunodeficient and Humanized Mice after Carotid or Femoral Arterial Injury. Sci Rep. 2016 Oct 19; 6: 35387. doi:10.1038/srep35387.; Sanmamed M.F., Rodriguez I., Schalper K.A., Oñate C., Azpilikueta A., Rodriguez-Ruiz M.E., Morales-Kastresana A., Labiano S., Pérez-Gracia J.L., Martín-Algarra S., Alfaro C., Mazzolini G., Sarno F., Hidalgo M., Korman A.J., Jure-Kunkel M., Melero I. Nivolumab and Urelumab Enhance Antitumor Activity of Human T Lymphocytes Engrafted in Rag2-/-IL2Rγnull Immunodeficient Mice. Cancer Res. 2015 Sep 1; 75(17): 3466–78. doi:10.1158/0008-5472.CAN-14-3510.; Chang D.K., Moniz R.J., Xu Z., Sun J., Signoretti S., Zhu Q., Marasco W.A. Human anti-CAIX antibodies mediate immune cell inhibition of renal cell carcinoma in vitro and in a humanized mouse model in vivo. Mol Cancer. 2015 Jun 11; 14: 119. doi:10.1186/s12943-015-0384-3.; Roth M.D., Harui A. Human tumor infiltrating lymphocytes cooperatively regulate prostate tumor growth in a humanized mouse model. J Immunother Cancer. 2015 Apr 21; 3: 12. doi:10.1186/s40425-015-0056-2.; Ye W., Jiang Z., Li G.X., Xiao Y., Lin S., Lai Y., Wang S., Li B., Jia B., Li Y., Huang Z.L., Li J, Feng F., Li S., Yao H., Liu Z., Cao S., Xu L., Li Y., Wu D., Zeng L, Zhong M., Liu P., Wen Z.S., Xu B., Yao Y., Pei D., Li P. Quantitative evaluation of the immunodeficiency of a mouse strain by tumor engraftments. J Hematol Oncol. 2015 May 29; 8: 59. doi:10.1186/s13045-015-0156-y.; Choi Y., Lee S., Kim K., Kim S.H., Chung Y.J., Lee C. Studying cancer immunotherapy using patient-derived xenografts (PDXs) in humanized mice. Exp Mol Med. 2018 Aug 7; 50(8): 1–9. doi:10.1038/s12276-018-0115-0.; Naserian S., Leclerc M., Thiolat A., Pilon C., Le Bret C., Belkacemi Y., Maury S., Charlotte F., Cohen J.L. Simple, Reproducible, and Efficient Clinical Grading System for Murine Models of Acute Graftversus-Host Disease. Front Immunol. 2018 Jan 22; 9: 10. doi:10.3389/fimmu.2018.00010.; Ishikawa F., Yasukawa M., Lyons B., Yoshida S., Miyamoto T., Yoshimoto G., Watanabe T., Akashi K., Shultz L.D., Harada M. Development of functional human blood and immune systems in NOD/SCID/IL2 receptor {gamma} chain(null) mice. Blood. 2005; 106(5): 1565–73. doi:10.1182/blood-2005-02-0516.; Knibbe-Hollinger J.S., Fields N.R., Chaudoin T.R., Epstein A.A., Makarov E., Akhter S.P., Gorantla S., Bonasera S.J., Gendelman H.E., Poluektova L.Y. Influence of age, irradiation and humanization on NSG mouse phenotypes. Biol Open. 2015 Sep 9; 4(10): 1243–52. doi:10.1242/bio.013201.; Miller P.H., Rabu G., MacAldaz M., Knapp D.J., Cheung A.M., Dhillon K., Nakamichi N., Beer P.A., Shultz L.D., Humphries R.K., Eaves C.J. Analysis of parameters that affect human hematopoietic cell outputs in mutant c-kit-immunodeficient mice. Exp Hematol. 2017 Apr; 48: 41–49. doi:10.1016/j.exphem.2016.12.012.; Brehm M.A., Bortell R., Diiorio P., Leif J., Laning J., Cuthbert A., Yang C., Herlihy M., Burzenski L., Gott B., Foreman O., Powers A.C., Greiner D.L., Shultz L.D. Human immune system development and rejection of human islet allografts in spontaneously diabetic NOD-Rag1null IL2rgammanull Ins2Akita mice. Diabetes. 2010 Sep; 59(9): 2265–70. doi:10.2337/db10-0323.; Morton J.J., Bird G., Keysar S.B., Astling D.P., Lyons T.R., Anderson R.T., Glogowska M.J., Estes P., Eagles J.R., Le P.N., Gan G., McGettigan B., Fernandez P., Padilla-Just N., Varella-Garcia M., Song J.I., Bowles D.W., Schedin P., Tan A.C., Roop D.R., Wang X.J., Refaeli Y., Jimeno A. XactMice: humanizing mouse bone marrow enables microenvironment reconstitution in a patient-derived xenograft model of head and neck cancer. Oncogene. 2016 Jan 21; 35(3): 290–300. doi:10.1038/onc.2015.94.; Tsoneva D., Minev B., Frentzen A., Zhang Q., Wege A.K., Szalay A.A. Humanized Mice with Subcutaneous Human Solid Tumors for Immune Response Analysis of Vaccinia Virus-Mediated Oncolysis. Mol Ther Oncolytics. 2017 Mar 21; 5: 41–61. doi:10.1016/j.omto.2017.03.001.; Jespersen H., Lindberg M.F., Donia M., Söderberg E.M.V., Andersen R., Keller U., Ny L., Svane I.M., Nilsson L.M., Nilsson J.A. Clinical responses to adoptive T-cell transfer can be modeled in an autologous immune-humanized mouse model. Nat Commun. 2017; 8(1): 707. doi:10.1038/s41467-017-00786-z.; Xia J., Hu Z., Yoshihara S., Li Y., Jin C.H., Tan S., Li W., Chen Q., Sykes M., Yang Y.G. Modeling Human Leukemia Immunotherapy in Humanized Mice. EBioMedicine. 2016 Aug; 10: 101–8. doi:10.1016/j.ebiom.2016.06.028.; Brehm M.A., Wiles M.V., Greiner D.L., Shultz L.D. Generation of improved humanized mouse models for human infectious diseases. J Immunol Methods. 2014 Aug; 410: 3–17. doi:10.1016/j.jim.2014.02.011.; Klevorn L.E., Teague R.M. Adapting Cancer Immunotherapy Models for the Real World. Trends Immunol. 2016 Jun; 37(6): 354–363. doi:10.1016/j.it.2016.03.010.; Abarrategi A., Mian S.A., Passaro D., Rouault-Pierre K., Grey W., Bonnet D. Modeling the human bone marrow niche in mice: From host bone marrow engraftment to bioengineering approaches. J Exp Med. 2018 Mar 5; 215(3): 729–743. doi:10.1084/jem.20172139.; Rahmig S., Kronstein-Wiedemann R., Fohgrub J., Kronstein N., Nevmerzhitskaya A., Bornhäuser M., Gassmann M., Platz A., Ordemann R., Tonn T., Waskow C. Improved Human Erythropoiesis and Platelet Formation in Humanized NSGW41 Mice. Stem Cell Reports. 2016 Oct 11; 7(4): 591–601. doi:10.1016/j.stemcr.2016.08.005.; Katano I., Nishime C., Ito R, Kamisako T., Mizusawa T., Ka Y., Ogura T., Suemizu H., Kawakami Y., Ito M., Takahashi T. Long-term maintenance of peripheral blood derived human NK cells in a novel human IL-15-transgenic NOG mouse. Sci Rep. 2017; 7(1): 17230. doi:10.1038/s41598-017-17442-7.; Herndler-Brandstetter D., Shan L., Yao Y., Stecher C., Plajer V., Lietzenmayer M., Strowig T., de Zoete M.R., Palm N.W., Chen J., Blish C.A., Frleta D., Gurer C., Macdonald L.E., Murphy A.J., Yancopoulos G.D., Montgomery R.R., Flavell R.A. Humanized mouse model supports development, function, and tissue residency of human natural killer cells. Proc Natl Acad Sci USA. 2017 Nov 7; 114(45): E9626–E9634. doi:10.1073/pnas.1705301114.; Zeng Y., Liu B., Rubio M.T., Wang X., Ojcius D.M., Tang R., Durrbach A., Ru Z., Zhou Y., Lone Y.C. Creation of an immunodeficient HLA-transgenic mouse (HUMAMICE) and functional validation of human immunity after transfer of HLA-matched human cells. PLoS One. 2017 Apr 11; 12(4): e0173754. doi:10.1371/journal.pone.0173754.; Huszthy P.C., Sakariassen P.Ø., Espedal H., Brokstad K.A., Bjerkvig R., Miletic H. Engraftment of Human Glioblastoma Cells in Immunocompetent Rats through Acquired Immunosuppression. PLoS One. 2015 Aug 20; 10(8): e0136089. doi:10.1371/journal.pone.0136089.; Semenkow S., Li S., Kahlert U.D., Raabe E.H., Xu J., Arnold A., Janowski M., Oh B.C., Brandacher G., Bulte J.W.M., Eberhart C.G., Walczak P. An immunocompetent mouse model of human glioblastoma. Oncotarget. 2017 May 15; 8(37): 61072–61082. doi:10.18632/oncotarget.17851.; https://www.siboncoj.ru/jour/article/view/1997
-
9Academic Journal
Συγγραφείς: E. R. Israelyan, A. A. Rumyantsev, G. D. Petrova, A. S. Tyulyandina, A. A. Tryakin, M. Yu. Fedyanin, I. S. Monin, N. M. Nikiforova, S. A. Tyulyandin, Э. Р. Исраелян, А. А. Румянцев, Г. Д. Петрова, А. С. Тюляндина, А. А. Трякин, М. Ю. Федянин, И. С. Монин, Н. М. Никифорова, С. А. Тюляндин
Πηγή: Malignant tumours; Том 12, № 4 (2022); 14-21 ; Злокачественные опухоли; Том 12, № 4 (2022); 14-21 ; 2587-6813 ; 2224-5057
Θεματικοί όροι: TGO, nonseminomatous germ cell tumors, induction chemotherapy, high-dose chemotherapy, autologous stem cell transplantation, несеминома, индукционная химиотерапия, гемопоэтические стволовые клетки, высокодозная химиотерапия, трансплантация аутологичных гемопоэтических стволовых клеток
Περιγραφή αρχείου: application/pdf
Relation: https://www.malignanttumors.org/jour/article/view/1007/712; Gillesen S., Sauve N., Collette L. et al. Predicting Outcomes in Men With Metastatic Nonseminomatous Germ Cell Tumors (NSGCT) : Results From the IGCCCG Update Consortium. J Clin Oncol. 2021; 39 (14) : 1563–1574. DOI:10.1200/JCO.20.03296.; Mead G., Cullen M., Huddart R. et al. A phase II trial of TIP (paclitaxel, ifosfamide and cisplatin) given as second-line (post-BEP) salvage chemotherapy for patients with metastatic germ cell cancer: a medical research council trial. British Journal of cancer. 2005; 93 : 178–184. DOI:10.1038/sj.bjc.6602682.; Kondagunta G., Bacik J., Donadio A., et al. Combination of paclitaxel, ifosfamide, and cisplatin is an effective second-line therapy for patients with relapsed testicular germ cell tumors. J Clin Oncol. 2005; 23 (27) : 6549–6555. DOI:10.1200/JCO.2005.19.638.; Nichols C., Tricot G., Williams S., et al. Dose-intensive chemotherapy in refractory germ cell cancer--a phase I / II trial of high-dose carboplatin and etoposide with autologous bone marrow transplantation. J Clin Oncol. 1989; 7 (7) : 932–939. DOI:10.1200/JCO.1989.7.7.932.; Beyer J., Kramar A., Mandanas R., et al. High-dose chemotherapy as salvage treatment in germ cell tumors: a multivariate analysis of prognostic variables. J Clin Oncol. 1996; 14 (10) : 2638–2645. DOI:10.1200/JCO.1996.14.10.2638.; Einhorn L., Williams S., Chamness A., et al. High-dose chemotherapy and stem-cell rescue for metastatic germ-cell tumors. N Engl J Med. 2007; 357 (4) : 340–348. DOI:10.1056/NEJMoa067749.; Feldman D., Sheinfeld J., Bajorin D., et al. TI–CE high-dose chemotherapy for patients with previously treated germ cell tumors: results and prognostic factor analysis. J Clin Oncol. 2010; 28 (10) : 1706–1713. DOI:10.1200/JCO.2009.25.1561.; Lorch A, Mollevi C, Kramar A, et al. Conventional-dose versus high-dose chemotherapy in relapsed or refractory male germ-cell tumors: A retrospective study in 1,594 patients. J Clin Oncol. 2011; 29 (16) : 2178–2184. DOI:10.1200/JCO.2010.32.6678.; Pico J., Rosti G., Kramar A., et al. A randomised trial of high-dose chemotherapy in the salvage treatment of patients failing first-line platinum chemotherapy for advanced germ cell tumours. Ann Oncol. 2005; 16 (7) : 1152–1159. DOI:10.1093/annonc/mdi228.; Tryakin A., Fedyanin M., Matveev V. et al. Practical guidelines for the treatment of germ cell tumors in men. Malignant Tumors: RUSSCO Practice Guidelines. 2021; 11 (3s2) : 556–585 (in Russ.) DOI:10.18027/2224-5057-2021-11-3s2-34.; National Comprehensive Cancer Network (NCCN). NCCN clinical practice guidelines in oncology. Testicular cancer. Available at: https://www.nccn.org/professionals/physician_gls (Accessed on July 03, 2022).; Fizazi K., Culine S., Kramar A. et al. Early Predicted Time to Normalization of Tumor Markers Predicts Outcome in Poor-Prognosis Nonseminomatous Germ Cell Tumors. J Clin Oncol. 2004; 22 : 3868–3876. DOI:10.1200/JCO.2004.04.008.; McHugh D., Feldman D. Conventional-Dose versus High-Dose Chemotherapy for Relapsed Germ Cell Tumors. Adv Urol. 2018 : 7272541. DOI:10.1155/2018/7272541.; https://www.malignanttumors.org/jour/article/view/1007
-
10Academic Journal
Πηγή: Bukovinian Medical Herald; Vol. 13 No. 4 (52) (2009); 129-132
Буковинский медицинский вестник; Том 13 № 4 (52) (2009); 129-132
Буковинський медичний вісник; Том 13 № 4 (52) (2009); 129-132Θεματικοί όροι: гемопоетичні стовбурові клітини, кістковий мозок, фетальна печінка, трансгенні тварини, гемопоэтические стволовые клетки, костный мозг, фетальная печень, трансгенные животные, hematopoietic stem cells, bone marrow, fetal liver, transgenic animals
Περιγραφή αρχείου: application/pdf
Σύνδεσμος πρόσβασης: http://e-bmv.bsmu.edu.ua/article/view/251161
-
11Academic Journal
Πηγή: Nauchno-prakticheskii zhurnal «Patogenez». :58-67
Θεματικοί όροι: 0301 basic medicine, 0303 health sciences, mesenchymal stem cells, vascular complications, сахарный диабет, diabetes, эндотелиальные прогениторные клетки, metabolic syndrome, 3. Good health, метаболический синдром, hematopoietic stem cells, 03 medical and health sciences, гемопоэтические стволовые клетки, сосудистые осложнения, мезенхимальные стволовые клетки, Endothelial progenitor cells
Σύνδεσμος πρόσβασης: http://pathogenesis.pro/index.php/pathogenesis/article/download/150/151
-
12Academic Journal
Συγγραφείς: Ponomareva, Yu. A., Turemuratova, D. Zh., Maklakova, I. Yu., Пономарева, Ю. А., Туремуратова, Д. Ж., Маклакова, И. Ю.
Πηγή: Сборник статей
Θεματικοί όροι: ACUTE TOXIC HEPATITIS, MULTIPOTENT MESENCHYMAL STROMAL CELLS, HEMATOPOIETIC STEM CELLS, LIVER REGENERATION, ОСТРЫЙ ТОКСИЧЕСКИЙ ГЕПАТИТ, МУЛЬТИПОТЕНТНЫЕ МЕЗЕНХИМАЛЬНЫЕ СТРОМАЛЬНЫЕ КЛЕТКИ, ГЕМОПОЭТИЧЕСКИЕ СТВОЛОВЫЕ КЛЕТКИ, РЕГЕНЕРАЦИЯ ПЕЧЕНИ
Περιγραφή αρχείου: application/pdf
Relation: Актуальные вопросы современной медицинской науки и здравоохранения: Материалы VI Международной научно-практической конференции молодых учёных и студентов, посвященной году науки и технологий, (Екатеринбург, 8-9 апреля 2021): в 3-х т.; http://elib.usma.ru/handle/usma/6872
Διαθεσιμότητα: http://elib.usma.ru/handle/usma/6872
-
13Academic Journal
Συγγραφείς: O. B. Ovsyannikova, L. P. Ananyeva, O. A. Koneva, L. A. Garzanova, O. V. Desinova, R. U. Shayakhmetova, M. N. Starovoitova, A. M. Lila, О. Б. Овсянникова, Л. П. Ананьева, О. А. Конева, Л. А. Гарзанова, О. В. Десинова, Р. У. Шаяхметова, М. Н. Старовойтова, А. М. Лила
Πηγή: Modern Rheumatology Journal; Том 15, № 1 (2021); 66-72 ; Современная ревматология; Том 15, № 1 (2021); 66-72 ; 2310-158X ; 1996-7012
Θεματικοί όροι: побочные эффекты, autotransplantation, hematopoietic stem cells, complications, transplantation, side effects, аутотрасплантация, гемопоэтические стволовые клетки, осложнения
Περιγραφή αρχείου: application/pdf
Relation: https://mrj.ima-press.net/mrj/article/view/1102/1059; Гусева НГ. Системная склеродермия и псеводсклеродермические синдромы. Москва: Медицина; 1993. 267 с.; Steen VD, Medsger TA. Changes in causes of death in systemic sclerosis, 1972-2002. Ann Rheum Dis. 2007 Jul;66(7):940-4. doi:10.1136/ard.2006.066068. Epub 2007 Feb 28.; Fuschiotti P. Current perspectives on the immunopathogenensis of systemic sclerosis. Immunotargets Ther. 2016 Apr 11;5:21-35. doi:10.2147/ITT.S82037. eCollection 2016.; Kowal-Bielecka O, Fransen J, Avouac J, et al. Update of EULAR recommendations for the treatment of systemic sclerosis. Ann Rheum Dis. 2017 Aug;76(8):1327-1339. doi:10.1136/annrheumdis-2016-209909. Epub 2016 Nov 9.; Denton CP, Hughes M, Gak N, et al. BSR and GHPR guideline for the treatment of systemic sclerosis. Rheumatology (Oxford). 2016 Oct;55(10):1906-10. doi:10.1093/rheumatology/kew224. Epub 2016 Jun 9.; Steen VD, Medsger TA Jr. Severe organ involvement in systemic sclerosis with diffuse scleroderma. Arthritis Rheum. 2000 Nov; 43(11):2437-44. doi:10.1002/1529-0131(200011)43:113.0.CO;2-U.; Fransen J, Popa-Diaconu D, Hesselstrand R, et al. Clinical prediction of 5-year survival in systemic sclerosis: validation of simple prognostic model in EUSTAR centres. Ann Rheum Dis. 2011 Oct;70(10):1788-92. doi:10.1136/ard.2010.144360. Epub 2011 Jul 21.; Kelsey PJ, Oliveira MC, Badoglio M, et al. Haemopoietic stem cell transplantation in autoimmune disease: from basic science to clinical practice. Curr Res Transl Med. Apr-Jun 2016;64(2):71-82. doi:10.1016/j.retram.2016.03.003. Epub 2016 May 31.; Van Laar JM, Farge D, Sont JK, et al. Autologous haemopoetic stem cell transplantation vs intravenous pulse cyclophosphamide in diffuse cutaneous systemic sclerosis: a randomized clinical trial. JAMA. 2014 Jun 25;311(24):2490-8. doi:10.1001/jama.2014.6368.; Burt RK, Shah SJ, Dill K, et al. Autologous non-myeloablative hemotopoetic stem-cell transplantation compared with pulse cyclophosphamide once per months for systemic sclerosis (ASSIST): an open label. Randomized phase 2 trial. Lancet. 2011 Aug 6;378(9790):498-506. doi:10.1016/S0140-6736(11)60982-3. Epub 2011 Jul 21.; Sullivan KM, Goldmuntz EA, KeyesElstein L, et al. Myeloablative autologous stem-cell transplantation for severe scleroderma. N Engl JMed. 2018 Jan 4;378(1):35-47. doi:10.1056/nejmoa1703327.; Farge D, Labopin M, Tyndall A, et al. Autologous hematopoietic stem cell transplantation for autoimmune diseases: an observational study on 12 years’ experience from the Europen Group for Blood and Marrow Transplantation Working Party on Autoimmune Diseases. Haemotologica. 2010 Feb;95(2):284-92. doi:10.3324/haematol.2009.013458. Epub 2009 Sep 22.; Snowden JA, Badoglio M, Labopin M, et al. Evolution, trends, outcomes, and economics of hematopoietic stem cell transplantation in severe autoimmune diseases. Blood Adv. 2017 Dec 20;1(27):2742-2755. doi:10.1182/bloodadvances.2017010041. eCollection 2017 Dec 26.; Domsic RT, Rodriguez-Reyna T, Lucas M, et al. Skin thickness progression rate: a predictor of mortality and early internal organ involvement in diffuse scleroderma. Ann Rheum Dis. 2011 Jan;70(1):104-9. doi:10.1136/ard.2009.127621. Epub 2010 Aug 2.; Maurer B, Graf N, Michal BA, et al. Prediction of worsening of skin fibrosis in patients with diffuse cutaneous systemic sclerosis using the EUSTAR database. Ann Rheum Dis. 2015 Jun;74(6):1124-31. doi:10.1136/annrheumdis-2014-205226. Epub 2014 Jun 30.; Steen VD, Medsger TA Jr. Improvement in skin thickening in systemic sclerosis associated with improved survival. Arthritis Rheum. 2001 Dec;44(12):2828-35. doi:10.1002/1529-0131(200112)44:123.0.co;2-u.; Del Papa N, Onida F, Zaccara E, et al. Autologous hematopoietic stem cell transplantation has better outcomes than conventional therapies in patients with rabidly progressive systemic sclerosis. Bone Marrow Transplant. 2017 Jan;52(1):53-8. doi:10.1038/bmt.2016.211. Epub 2016 Aug 22.; Гарзанова ЛА, Ананьева ЛП, Конева ОА, Овсянникова ОБ. Влияние ритуксимаба на поражение сердца при системной склеродермии. Научно-практическая ревматология. 2018;56(6):709-15.; Farge D, Burt RK, Oliveire MC, et al. Cardiopulmonary assessment of patients with systemic sclerosis for hematopoietic stem cell transplantation: recommendations from the European Society for Blood and Marrow Transplantation Autoimmune Disease Working Party and collaborating partners. Bone Marrow Transplantation. 2017 Nov; 52(11):1495-503. doi:10.1038/bmt.2017.56. Epub 2017 May 22.; Daikeler T, Tichelli A, Passweg J. Complications of autologous hematopoietic stem cell transplantation for patients with autoimmune disease. Pediatr Res. 2012 Apr; 71(4 Pt 2):439-44. doi:10.1038/pr.2011.57. Epub 2012 Feb 8.; Storek J, Zhao Z, Lin E, et al. Recovery from and consequences of severe iatrogenic lymphopenia (induced to treat autoimmune diseases). Clin Immunol. 2004 Dec; 113 (3): 285-98. doi:10.1076/j.clim.2004.07.006.; Maciejawska M, Snarski E, WiktorJedrzejczak W. A preliminary online study on menstruation recovery in women after autologous hemotopoietic stem cell transplant for autoimmune diseases. Exp Clin Transplant. 2016 Dec;14(6):665-9. doi:10.6002/ect.2015.0336. Epub 2016 Jun 15.; Snarski E, Snowden JA, Oliveria MC, et al. Onset and outcome of pregnancy after autologous haematopoietic SCT (AHSCT) for autoimmune diseases: a retrospective study of the EBMT autoimmune diseases working party (ADWP). Bone Marrow Transplant. 2015 Feb; 50(2):216-20. doi:10.1038/bmt.2014.248. Epub 2014 Nov 10.; Brown JR, Yeckes H, Friedberg JW, et al. Increasing incidence for late second malignancies after conditioning with cyclophosphamide and total-body irradiation and autologous bone marrow transplantation for non – Hodgkin’s lymphoma. J Clin Oncol. 2005 Apr 1;23(10):2208-14. doi:10.1200/JCO.2005.05.158. Epub 2005 Mar 7.; Armitage JO, Carbone PP, Connors JM, et al. Treatment-related myelodysplasia and acute leukemia in non-Hodgkin’s lymphoma patients. J Clin Oncol. 2003 Mar 1;21(5): 897-906. doi:10.1200/JCO.2003.07.113; Vaxman J, Ram R, Gafler-Gvili A, et al. Secondary malignancies following high dose therapy and autologous hematopoietic cell transplantation-systematic review and metaanalysis. Bone Marrow Transplant. 2015 May; 50(5):706-14. doi:10.1038/bmt.2014.325. Epub 2015 Feb 9.; Bonifazi M, Tramacere I, Pomponio G, et al. Systemic sclerosis (scleroderma) and cancer risk: systemic review and meta-analysis of observational studies. Rheumatology (Oxford). 2013 Jan;52(1):143-54. doi:10.1093/rheumatology/kes303. Epub 2012 Nov 22.; Onishi A, Sugiyama D, Kumagai S, et al. Cancer incidence in systemic sclerosis: metaanalysis of population-based cohort studies. Arthritis Rheum. 2013 Jul;65(7):1913-21. doi:10.1002/art.37969.; Zhang IQ, Wan YN, Peng WJ, et al. The risk of cancer development in systemic sclerosis: a meta-analysis. Cancer Epidemiol. 2013 Oct;37(5):523-7. doi:10.1016/j.canep.2013.04.014. Epub 2013 May.; Daikeler T, Tyndall A. Autoimmunity following haematopoietic stem-cell transplantation. Best Pract Res Clin Haematol. 2007 Jun; 20(2):349-60. doi:10.1016/j.beha.2006.09.008.; Daikeler T, Labopin M, Di Gioia M, et al. Secondary autoimmune disease occurring after HSCT for an autoimmune disease: a retrospective study of the EBMT Autoimmune Disease Working Party. Blood. 2011 Aug 11;118(6):1693-8. doi:10.1182/blood-2011-02-336156. Epub 2011 May 19.; Nash RA, McSwenney PA, Crofford LJ, et al. High-dose immunosuppressive therapy and autologous hematopoietic cell transplantation for severe systemic sclerosis: long-term follow-up of the US multicenter pilot study. Blood. 2007 Aug 15;110(4):1388-96. doi:10.1182/blood-2007-02-072389. Epub 2007 Apr 23.; Henes JC, Schmalzing M, Vogel W, et al. Optimization of autologous stem cell transplantation for systemic sclerosis – a single – center longterm experience in 26 patients with severe organ manifestations. J Rheumatol. 2012 Feb;39(2):269-75. doi:10.3899/jrheum.110868. Epub 2012 Jan 15.; Burt RK, Oliveira MC, Shah SJ, et al. Cardiac involvement and treatment – related mortality after non-myeloablative haemopoietic stem-cell transplantation with unselected autologous peripheral blood for patients with systemic sclerosis: a retrospective analysis. Lancet. 2013 Mar 30;381(9872):1116-24. doi:10.1016/S0140-6736(12)62114-X. Epub 2013 Jan 28.; Morandi P, Ruffini PA, Benvenuto GM, et al. Cardiac toxicity of high-dose chemotherapy. Bone Marrow Transplant. 2005 Feb;35(4):323-34. doi:10.1038/sj.bmt.1704763.; Shah SJ. Pulmonary hypertension. JAMA. 2012 Oct 3;308(13):1366-74. doi:10.1001/jama.2012.12347.; Krishnamurthy R, Cheong B, Muthupillai R. Tools for cardiovascular magnetic resonance imaging. Cardiovase Diagn Ther. 2014 Apr;4(2):104-25. doi:10.3978/j.issn.2223-3652.2014.03.06.; Mavrogeni SI, Schwitter J, Gargani L, et al. Cardiovasculare magnetic resonance in systemic sclerosis «Pearls and pitfalls». Semin Arthritis Rheum. 2017 Aug;47(1):79-85. doi:10.1016/j.semarthrit.2017.03.020. Epub 2017 Mar 31.; Ehlers SL, Gastineau DA, Patten CA, et al. The impact of smoking on outcomes among patients undergoing hematopoietic SCT for the treatment of acute leukemia. Bone Marrow Transplant. 2011 Feb;46(2): 285-90. doi:10.1038/bmt.2010.113. Epub 2010 May 17.; Zeidel A, Beilin B, Yardeni I, et al. Immune response in asymptomatic smokers. Acta Anaesthesiol Scand. 2002 Sep;46(8): 959-64. doi:10.1038/j.1399-6576.2002.460806.x.; Steen VD, Owens GR, Fino GJ, et al. Pulmonary involvement in systemic sclerosis (scleroderma). Arthritis Rheum. 1985 Jul; 28(7):759-67. doi:10.1002/art.1780280706.; Quadrelli SA, Molinari L, Ciallella LM, et al. Patterns of pulmonary function in smoking and nonsmoking patients with progressive systemic sclerosis. Rheumatol Int. 2009 Jul;29(9):995-9. doi:10.1007/s00296-008-0824-0. Epub 2009 Jan 8.; Helbig G, Widuchowska M, Koclega A, et al. Safety profile of autologous hematopoietic stem cell mobilization and transplantation in patients with systemic sclerosis. Clin Rheumatol. 2018 Jun;37(6):1709-14. doi:10.1007/s10067-017-3954-5. Epub 2017 Dec 18.
-
14Academic Journal
Πηγή: Bukovinian Medical Herald; Vol. 14 No. 3 (55) (2010); 115-118
Буковинский медицинский вестник; Том 14 № 3 (55) (2010); 115-118
Буковинський медичний вісник; Том 14 № 3 (55) (2010); 115-118Θεματικοί όροι: hemopoietic stem cells of fetal liver, electron microscopy, гемопоэтические стволовые клетки фетальной печени, электронная микроскопия, гемопоетичні стовбурові клітини фетальної печінки, електронна мікроскопія
Περιγραφή αρχείου: application/pdf
Σύνδεσμος πρόσβασης: http://e-bmv.bsmu.edu.ua/article/view/246281
-
15Academic Journal
Συγγραφείς: Pichkur, Leonid D., Semenova, Vira M., Verbovska, Svitlana A., Oleksenko, Natalia P., Akinola, Samuel T.
Πηγή: Ukrainian Neurosurgical Journal, Iss 2, Pp 27-33 (2017)
Український нейрохірургічний журнал; № 2 (2017); 27-33
Украинский нейрохирургический журнал; № 2 (2017); 27-33
Ukrainian Neurosurgical Journal; № 2 (2017); 27-33Θεματικοί όροι: Orthopedic surgery, 0301 basic medicine, experimental allergic encephalomyelitis, neurotransplantation, hematopoietic stem cells, fetal neurocells, 0303 health sciences, 03 medical and health sciences, экспериментальный аллергический энцефаломиелит, нейротрансплантация, гемопоэтические стволовые клетки, фетальные нейроклетки, експериментальний алергічний енцефаломієліт, нейротрансплантація, гемопоетичні стовбурові клітини, фетальні нейроклітини, Neurology. Diseases of the nervous system, RC346-429, RD701-811, 3. Good health
Περιγραφή αρχείου: application/pdf
-
16Academic Journal
Πηγή: ZHurnal «Patologicheskaia fiziologiia i eksperimental`naia terapiia». :22-27
Θεματικοί όροι: 0301 basic medicine, мультипотентные мезенхимальные стромальные клетки, 0303 health sciences, 03 medical and health sciences, ионизирующее излучение, regeneration, multipotent mesenchymal stromal cells, spleen, регенерация, ionizing radiation, гемопоэтические стволовые клетки, селезенка, hematopoietic stem cells
Σύνδεσμος πρόσβασης: https://pfiet.ru/article/view/397
-
17Academic Journal
Συγγραφείς: Zaytseva, O. V., Milovankin, V. A., Maklakova, I. Yu., Зайцева, О. В., Милованкин, В. А., Маклакова, И. Ю.
Πηγή: Сборник статей
Θεματικοί όροι: HEMOPOIETIC STEM CELLS, LIVER INSUFFICIENCY, LIVER RESECTION, MESENCHYMAL STEM CELLS, ГЕМОПОЭТИЧЕСКИЕ СТВОЛОВЫЕ КЛЕТКИ, ПЕЧЕНОЧНАЯ НЕДОСТАТОЧНОСТЬ, РЕЗЕКЦИЯ ПЕЧЕНИ, МЕЗЕНХИМАЛЬНЫЕ СТВОЛОВЫЕ КЛЕТКИ
Περιγραφή αρχείου: application/pdf
Relation: Сборник статей "V Международная (75 Всероссийская) научно-практическая конференция "Актуальные вопросы современной медицинской науки и здравоохранения". 2020. №2; http://elib.usma.ru/handle/usma/3079
Διαθεσιμότητα: http://elib.usma.ru/handle/usma/3079
-
18Academic Journal
Συγγραφείς: O. B. Ovsyannikova, L. P. Ananyeva, O. A. Koneva, L. A. Garzanova, R. U. Shayakhmetova, O. V. Desinova, M. N. Starovoitova, A. M. Lila, О. Б. Овсянникова, Л. П. Ананьева, О. А. Конева, Л. А. Гарзанова, Р. У. Шаяхметова, О. В. Десинова, М. Н. Старовойтова, А. М. Лила
Πηγή: Modern Rheumatology Journal; Том 14, № 4 (2020); 91-97 ; Современная ревматология; Том 14, № 4 (2020); 91-97 ; 2310-158X ; 1996-7012 ; 10.14412/1996-7012-2020-4
Θεματικοί όροι: трансплантация, hematopoietic stem cell autotransplantation, hematopoietic stem cells, therapy, transplantation, аутотрансплантация гемопоэтических стволовых клеток, гемопоэтические стволовые клетки, терапия
Περιγραφή αρχείου: application/pdf
Relation: https://mrj.ima-press.net/mrj/article/view/1074/1033; Гусева НГ. Системная склеродермия. В кн.: Сигидин ЯА, Иванова ММ, Гусева НГ. Диффузные болезни соединительной ткани. Москва: Медицина; 2004. 446 с.; Furst DE, Clements PJ. Hypothesis for the pathogenesis of systemic sclerosis. J Rheumatol Suppl. 1997 May;48:53-7.; Mayes MD, Lacey JV Jr, Beebe-Dimmer J, et al. Prevalence, incidence, survival, and disease characteristics of systemic sclerosis in a large US population. Arthritis Rheum. 2003 Aug;48(8):2246-55. doi:10.1002/art.11073.; Ананьева ЛП, Конева ОА, Десинова ОВ и др. Влияние ритуксимаба на проявления активности и легочную функцию у больных системной склеродермией: оценка после года наблюдения. Научно-практическая ревматология. 2019;57(3):265-73.; Khanna D, Denton CP. Evidence-based management of rapidly progressing systemic sclerosis. Best Pract Res Clin Rheumatol. 2010 Jun;24(3):387-400. doi:10.1016/j.berh.2009.12.002.; Burt RK, Milanetti F. Hematopoietic stem cell transplantation for systemic sclerosis:history and current status. Curr Opin Rheumatol. 2011 Nov;23(6):519-29. doi:10.1097/BOR.0b013e32834aa45f.; Kowal-Bielecka O, Fransen J, Avouac J, et al. Update of EULAR recommendations for the treatment of systemic sclerosis. Ann Rheum Dis. 2017 Aug;76(8):1327-39. doi:10.1136/annrheumdis-2016-209909. Epub 2016 Nov 9.; Jacob B, Vaan Laar JM. Stem cell transplantation – all scientific questions answered? Ann Rheum Dis. 2019;78(Suppl 2): A33.; Host L, Nikpour M, Calderone A, et al. Autologous stem cell transplantation in systemic sclerosis: a systemic review. Clin Exp Rheumatol. Sep-Oct 2017;35 Suppl 106(4): 198-207. Epub 2017 Aug 30.; Burt RK, Loh Y, Pearce W, et al. Clinical applications of blood – derived and marrowderived stem cells for non malignant disease. JAMA. 2008 Feb 27;299(8):925-36. doi:10.1001/jama.299.8.925.; Brown JR, Yeckes H, Friedberg JW, et al. Increasing incidence for late second malignancies after conditioning with cyclophosphamide and total-body irradiation and autologous bone marrow transplantation for non-Hodgkin's lymphoma. J Clin Oncol. 2005 Apr 1;23(10):2208-14. doi:10.1200/JCO.2005.05.158. Epub 2005 Mar 7.; Armitage JO, Carbone PP, Connors JM, et al. Treatment-related myelodysplasia and acute leukemia in non-Hodgkin's lymphoma patients. J Clin Oncol. 2003 Mar 1;21(5):897-906. doi:10.1200/JCO.2003.07.113.; Burt RK, Fassas A, Snowden J, et al. Collection of hematopoietic stem cells from patients with autoimmune diseases. Bone Marrow Transplant. 2001 Jul;28(1):1-12. doi:10.1038/sj.bmt.1703081.; Openshaw H, Stuve O, Antel JP, et al. Multiple sclerosis flares associated with recombinant granulocyte colony-stimulating factor. Neurology. 2000 Jun 13;54(11):2147-50. doi:10.1212/wnl.54.11.2147.; Snowden JA, Biggs LC, Milliken ST, et al. A randomized, blinded, placebo-controlled, dose escalation study of the tolerability and efficacy of filgrastim for haemopoietic stem cell mobilization in patients with severe active rheumatoid arthritis. Bone Marrow Transplant. 1998 Dec;22(11):1035-41. doi:10.1038/sj.bmt.1701486.; Locatelli F, Perotti C, Torretta R, et al. Mobilization and selection of peripheral blood hemotopoietic progenitors in children with systemic sclerosis. Haematologica. 1999 Sep;84(9):839-43.; Storb R. Hematopoietic stem cell transplantation in nonmalignant diseases. J Rheumatol Suppl. 1997 May;48:30-5.; Van Bekkum DW. Stem cell transplantation in experimental models of autoimmune disease. J Clin Immunol. 2000 Jan;20(1):10-6. doi:10.1023/a:1006682225181.; Алекперов РТ, Ананьева ЛП. Трансплантация аутологичных гемопоэтических стволовых клеток при системной склеродермии. Научно-практическая ревматология. 2012;50(4):67-72.; Van Laar JM, Farge D, Sont JK, et al. Autologous haemopoetic stem cell transplantation vs intravenous pulse cyclophosphamide in diffuse cutaneous systemic sclerosis: a randomized clinical trial. JAMA. 2014 Jun 25; 311(24):2490-8. doi:10.1001/jama.2014.6368.; Burt RK, Shah SJ, Dill K, et al. Autologous non-myeloablative hemotopoetic stem-cell transplantation compared with pulse cyclophosphamide once per months for systemic sclerosis (ASSIST): an open label. Randomized phase 2 trial. Lancet. 2011 Aug 6;378(9790):498-506. doi:10.1016/S0140-6736(11)60982-3. Epub 2011 Jul 21.; Farge D, Labopin M, Tyndall A, et al. Autologous hematopoietic stem cell transplantation for autoimmune diseases: an observational study on 12 years' experience from the Europen Group for Blood and Marrow Transplantation Working Party on Autoimmune Diseases. Haematologica. 2010 Feb;95(2):284-92. doi:10.3324/haematol.2009.013458. Epub 2009 Sep 22.; Henes JC, Koetter L, Horger M, et al. Autologus stem cell transplantation with thiotepa-based conditioning in patients with systemic sclerosis and cardiac manifestations. Rheumatology (Oxford). 2014 May;53(5): 919-22. doi:10.1093/rheumatology/ket464. Epub 2014 Jan 22.; Burt RK, Oliveira MC, Shah SJ, et al. Cardiac involvement and treatment – related mortality after non-myeloablative haemopoietic stem-cell transplantation with unselected autologous peripheral blood for patients with systemic sclerosis: a retrospective analysis. Lancet. 2013 Mar 30;381(9872):1116-24. doi:10.1016/S0140-6736(12)62114-X. Epub 2013 Jan 28.; Henes JC, Schmaizing M, Vogel W, et al. Optimization of autologous stem cell transplantation for systemic sclerosis – a single center longterm experience in 26 patients with severe organ manifestations. J Rheumatol. 2012 Feb;39(2):269-75. doi:10.3899/jrheum.110868. Epub 2012 Jan 15.; Vonk MC, Marjanovic Z, van Den Hoogen FH, et al. Long-term follow-up results after autologous hematopoietic stem cell transplantation for severe systemic sclerosis. Ann Rheum Dis. 2008 Jan;67(1):98-104. doi:10.1136/ard.2007.071464. Epub 2007 May 25.; Nash RA, McSwenney PA, Crofford LJ, et al. High-dose immunosuppressive therapy and autologous hematopoietic cell transplantation for severe systemic sclerosis: long-term follow-up of the US multicenter pilot study. Blood. 2007 Aug 15;110(4):1388-96. doi:10.1182/blood-2007-02-072389. Epub 2007 Apr 23.; Oyama Y, Barr WG, Statkute L, et al. autologous non-myeloablative hematopoietic stem cell transplantation in patients with systemic sclerosis. Bone Marrow Transplant. 2007 Sep;40(6):549-55. doi:10.1038/sj.bmt.1705782. Epub 2007 Jul 23.; Sullivan KM, Goldmuntz EA, KeyesElstein L, et al. Myeloablative autologous stem-cell transplantation for severe scleroderma. N Engl J Med. 2018 Jan 4;378(1):35-47. doi:10.1056/nejmoa1703327.; Oliveire MC, Labopin M, Henes J, et al. does ex vivo CD34+ positive selection influence outcome after autologous hematopoietic stem cell transplantation in systemic sclerosis patients? Bone Marrow Transplant. 2016 Apr; 51(4):501-5. doi:10.1038/bmt.2015.299. Epub 2015 Dec 7.; Launay D, Marjanovic Z, de Bazelaire C, et al. Autologous hematopoietic stem cell transplant in systemic sclerosis: quantitative highresolution computed tomography of the chest scoring. J Rheumatol. 2009 Jul;36(7): 1460-3. doi:10.3899/jrheum.081212. Epub 2009 Jun 16.
-
19Academic Journal
Συγγραφείς: Базарный, В. В., Маклакова, И. Ю., Гребнев, Д. Ю., Гаврилов, И. В.
Πηγή: Сборник статей
Θεματικοί όροι: РЕЗЕКЦИЯ ПЕЧЕНИ, МУЛЬТИПОТЕНТНЫЕ МЕЗЕНХИМАЛЬНЫЕ СТРОМАЛЬНЫЕ КЛЕТКИ, ГЕМОПОЭТИЧЕСКИЕ СТВОЛОВЫЕ КЛЕТКИ, КЛЕТОЧНАЯ РЕГЕНЕРАЦИЯ, ВНУТРИ КЛЕТОЧНАЯ РЕГЕНЕРАЦИЯ
Περιγραφή αρχείου: application/pdf
Relation: Клеточные технологии — практическому здравоохранению 2019 : Материалы VIII межрегиональной научно-практической конференции. Под. общ. ред. С. Л. Леонтьева. Екатеринбург, 3-4 декабря 2019 г.; http://elib.usma.ru/handle/usma/18112
Διαθεσιμότητα: http://elib.usma.ru/handle/usma/18112
-
20Academic Journal
Συγγραφείς: Nato D. Vashakmadze, Leyla S. Namazova-Baranova, Natalia V. Zhurkova, Ekaterina Yu. Zakharova, Svetlana V. Mikhaylova, Grigory V. Revunenkov, Н. Д. Вашакмадзе, Л. С. Намазова-Баранова, Н. В. Журкова, Е. Ю. Захарова, С. В. Михайлова, Г. В. Ревуненков
Συνεισφορές: Not specified., Не указан.
Πηγή: Current Pediatrics; Том 18, № 3 (2019); 196-202 ; Вопросы современной педиатрии; Том 18, № 3 (2019); 196-202 ; 1682-5535 ; 1682-5527
Θεματικοί όροι: выживаемость, mucopolysaccharidosis type I, Hurler syndrome, transplantation, hematopoietic stem cell, enzyme replacement therapy, survivabilit, мукополисахаридоз I типа, синдром Гурлер, трансплантация, гемопоэтические стволовые клетки, ферментозаместительная терапия
Περιγραφή αρχείου: application/pdf
Relation: https://vsp.spr-journal.ru/jour/article/view/2139/872; Rodgers NJ, Kaizer AM, Miller WP, et al. Mortality after hematopoietic stem cell transplantation for severe mucopolysaccharidosis type I: the 30-year University of Minnesota experience. J Inherit Metab Dis. 2017;40(2):271–280. doi:10.1007/s10545-016-0006-2.; Neufeld EF, Muenzer J. The mucopolysaccharidoses. In: Scriver CR, Beaudet AL, Sly WS, Valle D. The metabolic and molecular basis of inherited disease. 8th edition. New York: McGraw-Hill; 2001. рр. 3421–3452.; Moore D, Connock MJ, Wraith E, Lavery C. The prevalence of and survival in mucopolysaccharidosis I: Hurler, Hurler-Scheie and Scheie syndromes in the UK. Orphanet J Rare Dis. 2008;3:24. doi:10.1186/1750-1172-3-24.; Семячкина А.Н., Новиков П.В., Воскобоева Е.Ю., и др. Мукополисахаридоз I типа: новая технология лечения — ферментозамещающая терапия // Российский вестник перинатологии и педиатрии. — 2012. — Т. 57. — № 4–1. — С. 94–102.; Staba SL, Escolar ML, Poe M, et al. Cord-blood transplants from unrelated donors in patients with Hurler’s syndrome. N Engl J Med. 2004;350(19):1960–1969. doi:10.1056/NEJMoa032613.; Meng XL, Shen JS, Ohashi T, et al. Brain transplantation of genetically engineered human neural stem cells globally corrects brain lesions in the mucopolysaccharidosis type VII mouse. J Neurosci Res. 2003;74(2):266–277. doi:10.1002/jnr.10764.; Krivit W, Sung JH, Shapiro EG, Lockman LA. Microglia: the effector cell for reconstitution of the central nervous system following bone marrow transplantation for lysosomal and peroxisomal storage diseases. Cell Transplant. 1995;4(4):385–392. doi:10.1016/0963-6897(95)00021-o.; Бучинская Н.В., Калашникова О.В., Дубко М.Ф., и др. Мукополисахаридоз I типа в Санкт-Петербурге: генетические варианты и опыт фермент-заместительной терапии // Педиатр. — 2013. — Т. 4. — № 3. — С. 41–46.; de Ru MH, Boelens JJ, Das AM, et al. Enzyme replacement therapy and/or hematopoietic stem cell transplantation at diagnosis in patients with mucopolysaccharidosis type I: results of a European consensus procedure. Orphanet J Rare Dis. 2011;6:55. doi:10.1186/1750-1172-6-55.; Krivit W. Allogeneic stem cell transplantation for the treatment of lysosomal and peroxisomal metabolic diseases. Springer Semin Immunopathol. 2004;26(1-2):119–132. doi:10.1007/s00281-004-0166-2.; Prasad VK, Kurtzberg J. Emerging trends in transplantation of inherited metabolic diseases. Bone Marrow Transplant. 2008; 41(2):99–108. doi:10.1038/sj.bmt.1705970.; Rovelli AM, Steward CG. Hematopoietic cell transplantation activity in Europe for inherited metabolic diseases: open issues and future directions. Bone Marrow Transplant. 2005;35 Suppl 1: S23–26. doi:10.1038/sj.bmt.1704839.; Tanaka A, Okuyama T, Suzuki Y, et al. Long-term efficacy of hematopoietic stem cell transplantation on brain involvement in patients with mucopolysaccharidosis type II: a nationwide survey in Japan. Mol Genet Metab. 2012;107(3):513–520. doi:10.1016/j.ymgme.2012.09.004.; Valayannopoulos V, Wijburg FA. Therapy for the mucopolysaccharidoses. Rheumatology (Oxford). 2011;50 Suppl 5:v49–59. doi:10.1093/rheumatology/ker396.; Aldenhoven M, Wynn RF, Orchard PJ, et al. Long-term outcome of Hurler syndrome patients after hematopoietic cell transplantation: an international multicenter study. Blood. 2015;125(13): 2164–2172. doi:10.1182/blood-2014-11-608075.; Noh H, Lee JI. Current and potential therapeutic strategies for mucopolysaccharidoses. J Clin Pharm Ther. 2014;39(3):215–224. doi:10.1111/jcpt.12136.; Tomatsu S, Almeciga-Diaz CJ, Montano AM, et al. Therapies for the bone in mucopolysaccharidoses. Mol Genet Metab. 2015; 114(2):94–109. doi:10.1016/j.ymgme.2014.12.001.; Araya K, Sakai N, Mohri I, et al. Localized donor cells in brain of a Hunter disease patient after cord blood stem cell transplantation. Mol Genet Metab. 2009;98(3):255–263. doi:10.1016/j.ymgme.2009.05.006.; Boelens JJ, Rocha V, Aldenhoven M, et al. Risk factor analysis of outcomes after unrelated cord blood transplantation in patients with Hurler syndrome. Biol Blood Marrow Transplant. 2009;15(5): 618–625. doi:10.1016/j.bbmt.2009.01.020.; Boelens JJ, van Hasselt PM. Neurodevelopmental outcome after hematopoietic cell transplantation in inborn errors of metabolism: current considerations and future perspectives. Neuropediatrics. 2016;47(5):285–292. doi:10.1055/s-0036-1584602.; Boelens JJ, Wynn RF, O’Meara A, et al. Outcomes of hematopoietic stem cell transplantation for Hurler’s syndrome in Europe: a risk factor analysis for graft failure. Bone Marrow Transplant. 2007;40(3):225–233. doi:10.1038/sj.bmt.1705718.; Peters C, Shapiro EG, Anderson J, et al. Hurler syndrome: II. Outcome of HLA-genotypically identical sibling and HLA-haploidentical related donor bone marrow transplantation in fifty-four children. The Storage Disease Collaborative Study Group. Blood. 1998;91(7):2601–2608.; Aldenhoven M, Jones SA, Bonney D, et al. Hematopoietic cell transplantation for mucopolysaccharidosis patients is safe and effective: results after implementation of international guidelines. Biol Blood Marrow Transplant. 2015;21(6):1106–1109. doi:10.1016/j.bbmt.2015.02.011.; Tomatsu S, Sawamoto K, Almeciga-Diaz CJ, et al. Impact of enzyme replacement therapy and hematopoietic stem cell transplantation in patients with Morquio A syndrome. Drug Des Devel Ther. 2015;9:1937–1953. doi:10.2147/DDDT.S68562.; Tanjuakio J, Suzuki Y, Patel P, et al. Activities of daily living in patients with Hunter syndrome: impact of enzyme replacement therapy and hematopoietic stem cell transplantation. Mol Genet Metab. 2015;114(2):161–169. doi:10.1016/j.ymgme. 2014.11.002.; Braunlin EA, Stauffer NR, Peters CH, et al. Usefulness of bone marrow transplantation in the Hurler syndrome. Am J Cardiol. 2003;92(7):882–886. doi:10.1016/s0002-9149(03)00909-3.; Herskhovitz E, Young E, Rainer J, et al. Bone marrow transplantation for Maroteaux-Lamy syndrome (MPS VI): long-term follow-up. J Inherit Metab Dis. 1999;22(1):50–62. doi:10.1023/ A:1005447232027.; Muenzer J. Overview of the mucopolysaccharidoses. Rheuma tology (Oxford). 2011;50 Suppl 5:v4–12. doi:10.1093/ rheumatology/ker394.; Boelens JJ, Aldenhoven M, Purtill D, et al. Outcomes of transplantation using various hematopoietic cell sources in children with Hurler syndrome after myeloablative conditioning. Blood. 2013; 121(19):3981–3987. doi:10.1182/blood-2012-09-455238.; Rovelli AM. The controversial and changing role of haematopoietic cell transplantation for lysosomal storage disorders: an update. Bone Marrow Transplant. 2008;41 Suppl 2:S87–89. doi:10.1038/bmt.2008.62.; Weisstein JS, Delgado E, Steinbach LS, et al. Musculoskeletal manifestations of Hurler syndrome: long-term follow-up after bone marrow transplantation. J Pediatr Orthop. 2004;24(1):97–101. doi:10.1097/01241398-200401000-00019.; Dickson P, Peinovich M, McEntee M, et al. Immune tolerance improves the efficacy of enzyme replacement therapy in canine mucopolysaccharidosis I. J Clin Invest. 2008;118(8):2868–2876. doi:10.1172/JCI34676.; Kakkis ED, Muenzer J, Tiller GE, et al. Enzyme-replacement therapy in mucopolysaccharidosis I. N Engl J Med. 2001;344(3): 182–188. doi:10.1056/NEJM200101183440304.; Ghosh A, Miller W, Orchard PJ, et al. Enzyme replacement therapy prior to haematopoietic stem cell transplantation in mucopolysaccharidosis type I: 10-year combined experience of 2 centres. Mol Genet Metab. 2016;117(3):373–377. doi:10.1016/j.ymgme. 2016.01.011.; Wraith JE, Beck M, Lane R, et al. Enzyme replacement therapy in patients who have mucopolysaccharidosis I and are younger than 5 years: results of a multinational study of recombinant human alpha-L-iduronidase (laronidase). Pediatrics. 2007;120(1):e37–46. doi:10.1542/peds.2006–2156.; Biffi A. Hematopoietic stem cell gene therapy for storage disease: current and new indications. Mol Ther. 2017;25(5): 1155–1162. doi:10.1016/j.ymthe.2017.03.025.; Kubaski F, Yabe H, Suzuki Y, et al. Hematopoietic stem cell transplantation for patients with mucopolysaccharidosis II. Biol Blood Marrow Transplant. 2017;23(10):1795–1803. doi:10.1016/j.bbmt.2017.06.020.; Wynn RF, Wraith JE, Mercer J, et al. Improved metabolic correction in patients with lysosomal storage disease treated with hematopoietic stem cell transplant compared with enzyme replacement therapy. J Pediatr. 2009;154(4):609–611. doi:10.1016/j.jpeds.2008.11.005.; Wang J, Luan Z, Jiang H, et al. Allogeneic hematopoietic stem cell transplantation in thirty-four pediatric cases of mucopolysaccharidosis-A ten-year report from the China Children Transplant Group. Biol Blood Marrow Transplant. 2016;22(11): 2104–2108. doi:10.1016/j.bbmt.2016.08.015.; Mitchell R, Nivison-Smith I, Anazodo A, et al. Outcomes of haematopoietic stem cell transplantation for inherited metabolic disorders: a report from the Australian and New Zealand Children’s Haematology Oncology Group and the Australasian Bone Marrow Transplant Recipient Registry. Pediatr Transplant. 2013;17(6): 582–588. doi:10.1111/petr.12109.; Vellodi A, Young EP, Cooper A, et al. Bone marrow transplantation for mucopolysaccharidosis type I: experience of two British centres. Arch Dis Child. 1997;76(2):92–99. doi:10.1136/adc.76.2.92.; Orchard PJ, Milla C, Braunlin E, et al. Pre-transplant risk factors affecting outcome in Hurler syndrome. Bone Marrow Transplant. 2010;45(7):1239–1246. doi:10.1038/bmt.2009.319.; Cox-Brinkman J, Boelens JJ, Wraith JE, et al. Haematopoietic cell transplantation (HCT) in combination with enzyme replacement therapy (ERT) in patients with Hurler syndrome. Bone Marrow Transplant. 2006;38(1):17–21. doi:10.1038/sj.bmt.1705401.; Australian Government Department of Health. Life Saving Drugs Program: Information for patients, prescribers and pharmacists [Internet]. Guidelines for the treatment of mucopolysaccharidosis type I (MPS I) [updated 2019 May 10]. Available from: https://www1. health.gov.au/internet/main/publishing.nsf/Content/lsdp-criteria.; Prasad VK, Kurtzberg J. Cord blood and bone marrow transplantation in inherited metabolic diseases: scientific basis, current status and future directions. Br J Haematol. 2010;148(3):356–372. doi:10.1111/j.1365-2141.2009.07974.x.; Prasad VK, Mendizabal A, Parikh SH, et al. Unrelated donor umbilical cord blood transplantation for inherited metabolic disorders in 159 pediatric patients from a single center: influence of cellular composition of the graft on transplantation outcomes. Blood. 2008;112(7):2979–2989. doi:10.1182/blood-2008-03-140830.; Baxter MA, Wynn RF, Schyma L, et al. Marrow stromal cells from patients affected by MPS I differentially support haematopoietic progenitor cell development. J Inherit Metab Dis. 2005;28(6): 1045–1053. doi:10.1007/s10545-005-0136-4.; Ferrara G, Maximova N, Zennaro F, et al. Hematopoietic stem cell transplantation effects on spinal cord compression in Hurler. Pediatr Transplant. 2014;18(3):E96–99. doi:10.1111/petr.12231.; Pievani A, Azario I, Antolini L, et al. Neonatal bone marrow transplantation prevents bone pathology in a mouse model of mucopolysaccharidosis type I. Blood. 2015;125(10):1662–1671. doi:10.1182/blood-2014-06-581207.; Kurtzberg J. Early HSCT corrects the skeleton in MPS. Blood. 2015;125(10):1518–1519. doi:10.1182/blood-2014-11-606681.; Barth AL, de Magalhaes TS, Reis AB, et al. Early hema topoietic stem cell transplantation in a patient with severe mucopolysaccharidosis II: A 7 years follow-up. Mol Genet Metab Rep. 2017;12:62–68. doi:10.1016/j.ymgmr.2017.05.010.