Εμφανίζονται 1 - 20 Αποτελέσματα από 37 για την αναζήτηση '"АНТИГЕНПРЕЗЕНТИРУЮЩИЕ КЛЕТКИ"', χρόνος αναζήτησης: 1,00δλ Περιορισμός αποτελεσμάτων
  1. 1
  2. 2
    Academic Journal

    Πηγή: Russian Sklifosovsky Journal "Emergency Medical Care"; Том 12, № 1 (2023); 122-129 ; Журнал им. Н.В. Склифосовского «Неотложная медицинская помощь»; Том 12, № 1 (2023); 122-129 ; 2541-8017 ; 2223-9022

    Περιγραφή αρχείου: application/pdf

    Relation: https://www.jnmp.ru/jour/article/view/1578/1281; https://www.jnmp.ru/jour/article/view/1578/1302; Zhu N, Zhang D, Wang W, Li X, Yang B, Song J, et al. A novel coronavirus from patients with pneumonia in China, 2019. N Engl J Med. 2020;382(8):727–733. PMID: 31978945 https://doi.org/10.1056/ NEJMoa2001017; WHO Director-General’s Opening Remarks at the Media Briefing on COVID-19 – 11 March 2020. Available at: https://www.who.int/directorgeneral/speeches/detail/who-director-general-s-opening-remarks-atthe-media-briefing-on-covid-19---11-march-2020 [Accessed January 21, 2022].; van Doremalen N, Bushmaker T, Morris DH, Holbrook MG, Gamble A, Williamson BN, et al. Aerosol and surface stability of SARS-CoV-2 as compared with SARS-CoV-1. N Engl J Med. 2020;382(16):1564–1567. PMID: 32182409 https://doi.org/10.1056/NEJMc2004973; Wan Y, Shang J, Graham R, Baric RS, Li F. Receptor recognition by novel coronavirus from Wuhan: an analysis based on decade-long structural studies of SARS. J Virol. 2020;94(7):e00127–20. PMID: 31996437 https:// doi.org/10.1128/JVI.00127-20; Hoffmann M, Kleine-Weber H, Schroeder S, Krüger N, Herrler T, Erichsen S, et al. SARS-CoV-2 Cell Entry Depends on ACE2 and TMPRSS2 and Is Blocked by a Clinically Proven Protease Inhibitor. Cell. 2020;181(2):271–280.e8. PMID: 32142651 https://doi.org/10.1016/ j.cell.2020.02.052; Fung SY, Yuen KS, Ye ZW, Chan CP, Jin DY. A tug-of-war between severe acute respiratory syndrome coronavirus 2 and host antiviral defence: lessons from other pathogenic viruses. Emerg Microbes Infect. 2020;9(1):558–570. PMID: 32172672 https://doi.org/10.1080/22221751 .2020.1736644; Wu Z, McGoogan JM. Characteristics of and important lessons from the coronavirus disease 2019 (COVID-19) outbreak in China: summary of a report of 72314 cases from the Chinese Center for Disease Control and Prevention. JAMA. 2020;323(13):1239–1242. PMID: 32091533 https:// doi.org/10.1001/jama.2020.2648; Zhou F, Yu T, Du R, Fan G, Liu Y, Liu Z, et al. Clinical course and risk factors for mortality of adult inpatients with COVID-19 in Wuhan, China: a retrospective cohort study. Lancet. 2020;395(10229):1054– 1062. PMID: 32171076 https://doi.org/10.1016/S0140-6736(20)30566-3; Cavalcante-Silva LHA, Carvalho DCM, Lima ÉA, Galvão JGFM, da Silva JSF, Sales-Neto JM, et al. Neutrophils and COVID-19: The road so far. Int Immunopharmacol. 2021;90:107233. PMID: 33290963 https://doi. org/10.1016/j.intimp.2020.107233; Профилактика, диагностика и лечение новой коронавирусной инфекции (COVID-19): временные методические рекомендации. Версия 13.1 (17.11.2021). Москва; 2021.; van der Made CI, Simons A, Schuurs-Hoeijmakers J, van den Heuvel G, Mantere T, Kersten S, et al. Presence of Genetic Variants Among Young Men with Severe COVID-19. JAMA. 2020;324(7):663–673. PMID: 32706371 https://doi.org/10.1001/jama.2020.13719; Zhu J, Mohan C. Toll-Like receptor signaling pathways—therapeutic opportunities. Mediators Inflamm. 2010;2010:781235. PMID: 20981241 https://doi.org/10.1155/2010/781235; Knoll R, Schultze JL, Schulte-Schrepping J. Monocytes and Macrophages in COVID-19. Front Immunol. 2021;12:720109. PMID: 34367190https:// doi.org/10.3389/fimmu.2021.720109; Долгов В.В. (ред.) Клиническая лабораторная диагностика: в 2-х т. Т. 1. Москва: Лабдиаг; 2017.; Chowdhury MA, Hossain N, Kashem MA, Shahid MA, Alam A. Immune response in COVID-19: A review. J Infect Public Health. 2020;13(11):1619– 1629. PMID: 32718895 https://doi.org/10.1016/j.jiph.2020.07.001; Zhou Y, Fu B, Zheng X, Wang D, Zhao C, Qi Y, et al. Pathogenic T-cells and inflammatory monocytes incite inflammatory storms in severe COVID-19 patients. Natl Sci Rev. 2020;7(6):998–1002. PMID: 34676125 https://doi.org/10.1093/nsr/nwaa041; Boyette LB, Macedo C, Hadi K, Elinoff BD, Walters JT, Ramaswami B, et al. Phenotype, function, and differentiation potential of human monocyte subsets. PLoS One. 2017;12(4):e0176460. PMID: 28445506 https://doi.org/0.1371/journal.pone.0176460; Zhuang Y, Peng H, Chen Y, Zhou S, Chen Y. Dynamic monitoring of monocyte HLA-DR expression for the diagnosis, prognosis, and prediction of sepsis. Front Biosci (Landmark Ed). 2017;22:1344–1354. PMID: 28199206 https://doi.org/10.2741/4547; Napoli C, Benincasa G, Criscuolo C, Faenza M, Liberato C, Rusciano M. Immune reactivity during COVID-19: Implications for treatment. Immunol Lett. 2021;231:28–34. PMID: 33421440 https://doi.org/10.1016/ j.imlet.2021.01.001; Monneret G, Gossez M, Aghaeepour N, Gaudilliere B, Venet F. How Clinical Flow Cytometry Rebooted Sepsis Immunology. Cytometry A. 2019;95(4):431–441. PMID: 30887636 https://doi.org/10.1002/cyto. a.23749; Ohno Y, Kitamura H, Takahashi N, Ohtake J, Kaneumi S, Sumida K, et al. IL-6 down-regulates HLA class II expression and IL-12 production of human dendritic cells to impair activation of antigen-specific CD4(+) T cells. Cancer Immunol Immunother. 2016;65(2):193–204. PMID: 26759006 https://doi.org/10.1007/s00262-015-1791-4; Fu B, Xu X, Wei H.Why tocilizumab could be an effective treatment for severe COVID-19? J Transl Med. 2020;18(1):164. PMID: 32290839 https://doi.org/10.1186/s12967-020-02339-3; Giamarellos-Bourboulis EJ, Netea MG, Rovina N, Akinosoglou K, Antoniadou A, Antonakos N, et al. Complex immune dysregulation in COVID-19 patients with severe respiratory failure. Cell Host Microbe. 2020;27(6):992–1000.e3. PMID: 32320677 https://doi.org/10.1016/ j.chom.2020.04.009; Meidaninikjeh S, Sabouni N, Marzouni HZ, Bengar S, Khalili A, Jafari R. Monocytes and macrophages in COVID-19: Friends and foes. Life Sci. 2021;269:119010. PMID: 33454368 https://doi.org/10.1016/ j.lfs.2020.119010; Bassler K, Schulte-Schrepping J, Warnat-Herresthal S, Aschenbrenner AC, Schultze JL. The Myeloid Cell Compartment-Cell by Cell. Annu Rev Immunol. 2019;37:269–293. PMID: 30649988 https://doi.org/10.1146/ annurev-immunol-042718-041728; Kapellos TS, Bonaguro L, Gemünd I, Reusch N, Saglam A, Hinkley ER, et al. Human Monocyte Subsets and Phenotypes in Major Chronic Inflammatory Diseases. Front Immunol. 2019;10:2035. PMID: 31543877 https://doi.org/10.3389/fimmu.2019.02035; Merino A, Buendia P, Martin-Malo A, Aljama P, Ramirez R. Carracedo J. Senescent CD14+CD16+ Monocytes Exhibit Proinflammatory and Proatherosclerotic Activity. J Immunol. 2011;186(3):1809–1815. PMID: 21191073 https://doi.org/10.4049/jimmunol.1001866; Васильева Е.Ф., Брусов О.С. Роль моноцитов в клеточно-молекулярных механизмах развития системного иммунного воспаления. Часть 1. Психиатрия. 2020;18(3):76–85. https://doi.org/10.30629/2618- 6667-2020-18-3-76-85; Strauss-Ayali D, Conrad SM, Mosser DM. Monocyte subpopulations and their differentiation patterns during infection. J Leukoc Biol. 2007;82(2):244–52. PMID: 17475785 https://doi.org/10.1189/ jlb.0307191; Misharin AV, Morales-Nebreda L, Reyfman PA, Cuda CM, Walter JM, McQuattie-Pimentel AC, et al. Monocyte-derived alveolar macrophages drive lung fibrosis and persist in the lung over the life span. J Exp Med. 2017;214(8):2387–2404. PMID: 28694385 https://doi.org/10.1084/ jem.20162152; Ярилин А.А. Иммунология. Москва: ГЭОТАР-Медиа; 2010.; Калашникова А.А., Ворошилова Т.М., Чиненова Л.В., Давыдова Н.И., Калинина Н.М. Субпопуляции моноцитов у здоровых лиц и у пациентов с сепсисом. Медицинская иммунология. 2018;20(6):815– 824.; Zhu H, Ding Y, Zhang Y, Ding X, Zhao J, Ouyang W, et al. CTRP3 induces an intermediate switch of CD14++CD16+ monocyte subset with antiinflammatory phenotype. Exp Ther Med. 2020;199(3):2243–2251. PMID: 32104290 https://doi.org/10.3892/etm.2020.8467; Zhu M, Lei L, Zhu Z, Li Q, Guo D, Xu J, et al. Excess TNF-D in the blood activates monocytes with the potential to directly form cholesteryl ester-laden cells. Acta Biochim Biophys Sin (Shanghai). 2015;47(11):899– 907. PMID: 26373842 https://doi.org/10.1093/abbs/gmv092; Kim JS, Lee JY, Yang JW, Lee KH, Effenberger M, Szpirt W, et al. Immunopathogenesis and treatment of cytokine storm in COVID19. Theranostics. 2021;11(1):316–329. PMID: 33391477 https://doi. org/10.7150/thno.49713; Yang X, Yu Y, Xu J, Shu H, Xia J, Liu H, et al. Clinical course and outcomes of critically ill patients with SARS-CoV-2 pneumonia in Wuhan, China: a single-centered, retrospective, observational study. Lancet Respir Med. 2020;8(5):475–481. PMID: 32105632 https://doi.org/10.1016/S2213- 2600(20)30079-5; Ragab D, Salah Eldin H, Taeimah M, Khattab R, Salem R. The COVID-19 Cytokine Storm; What We Know So Far. Front Immunol. 2020;11:1446. PMID: 32612617 https://doi.org/10.3389/fimmu.2020.01446; McGonagle D, Sharif K, O’Regan A, Bridgewood C. The Role of Cytokines including Interleukin-6 in COVID-19 induced Pneumonia and Macrophage Activation Syndrome-Like Disease. Autoimmun Rev. 2020;19(6):102537. PMID: 32251717 https://doi.org/10.1016/ j.autrev.2020.102537; Ye Q, Wang B, Mao J. The pathogenesis and treatment of the `Cytokine Storm’ in COVID-19. J Infect. 2020;80(6):607–613. PMID: 32283152 https://doi.org/10.1016/j.jinf.2020.03.037; Blanco-Melo D, Nilsson-Payant BE, Liu WC, Uhl S, Hoagland D, Moller R, et al. Imbalanced Host Response to SARS-CoV-2 Drives Development of COVID-19. Cell. 2020;181(5):1036–1045.e9. PMID: 32416070 https:// doi.org/10.1016/j.cell.2020.04.026; Hadjadj J, Yatim N, Barnabei L, Corneau A, Boussier J, Smith N, et al. Impaired type I interferone activity and inflammatory responses in severe Covid-19 patients. Science. 2020;369(6504):718–724. PMID: 32661059 https://doi.org/10.1126/science.abc6027; Mehta P, McAuley DF, Brown M, Sanchez E, Tattersall RS, Manson JJ; HLH Across Speciality Collaboration, UK. COVID-19: consider cytokine storm syndromes and immunosuppression. Lancet. 2020;395(10229):1033– 1034. PMID: 32192578 https://doi.org/10.1016/S0140-6736(20)30628-0; Nile SH, Nile A, Qiu J, Li L, Jia X, Kai G. COVID-19: Pathogenesis, cytokine storm and therapeutic potential of interferons. Cytokine Growth Factor Rev. 2020;53:66–70. PMID: 32418715 https://doi.org/10.1016/ j.cytogfr.2020.05.002; Aziz M, Fatima R, Assaly R. Elevated interleukin-6 and severe COVID-19: A meta-analysis. J Med Virol. 2020;92(11):2283–2285. PMID: 32343429 https://doi.org/10.1002/jmv.25948; Liu F, Li L, Xu M, Wu J, Luo D, Zhu Y, et al. Prognostic value of interleukin-6, C-reactive protein, and procalcitonin in patients with COVID-19. J Clin Virol. 2020;127:104370. PMID: 32344321 https://doi. org/10.1016/j.jcv.2020.104370; Yang P, Ding Y, Xu Z, Pu R, Li P, Yan J, et al. Epidemiological and clinical features of COVID-19 patients with and without pneumonia in Beijing, China. MedRxiv. 2020. Available at: https://www.medrxiv.org/ content/10.1101/2020.02.28.20028068v1 [Accessed January 24, 2022]. https://doi.org/10.1101/2020.02.28.20028068; Han H, Ma Q, Li C, Liu R, Zhao L, Wang W, et al. Profiling serum cytokines in COVID-19 patients reveals IL-6 and IL-10 are disease severity predictors. Emerg Microbes Infect. 2020;9(1):1123–1130. PMID: 32475230 https://doi.org/10.1080/22221751.2020.1770129; Lu L, Zhang H, Dauphars DJ, He YW A Potential Role of Interleukin 10 in COVID-19 Pathogenesis. Trends Immunol. 2021;42(1):3–5. PMID: 33214057 https://doi.org/10.1016/j.it.2020.10.012; Satış H, Özger HS, Aysert Yıldız P, Hızel K, Gulbahar Ö, Erbaş G, et al. Prognostic value of interleukin-18 and its association with otherinflammatory markers and disease severity in COVID-19. Cytokine. 2021;137:155302. PMID: 33002740 https://doi.org/10.1016/ j.cyto.2020.155302; Costela-Ruiz VJ, Illescas-Montes R, Puerta-Puerta JM, Ruiz C, MelguizoRodríguez L. SARS-CoV-2 infection: The role of cytokines in COVID-19 disease. Cytokine Growth Factor Rev. 2020;54:62–75. PMID: 32513566 https://doi.org/10.1016/j.cytogfr.2020.06.001; Diao B, Wang C, Tan Y, Chen X, Liu Y, Ning L, et al. Reduction and Functional Exhaustion of T Cells in Patients with Coronavirus Disease 2019 (COVID-19). Front Immunol. 2020;11:827. PMID: 32425950 https:// doi.org/10.3389/fimmu.2020.00827; Pence BD. PenceSevere COVID-19 and aging: are monocytes the key? Geroscience. 2020;42(4):1051–1061. PMID: 32556942 https://doi. org/10.1007/s11357-020-00213-0; Zhang F, Gan R, Zhen Z, Hu X, Li X, Zhou F, et al. Adaptive immune responses to SARS-CoV-2 infection in severe versus mild individuals. Signal Transduct Target Ther. 2020;5(1):156. PMID: 32796814 https:// doi.org/10.1038/s41392-020-00263-y; Wilk AJ, Rustagi A, Zhao NQ, Roque J, Martínez-Colón GJ, McKechnie JL, et al. A single-cell atlas of the peripheral immune response in patients with severe COVID-19. Nat Med. 2020;26(7):1070–1076. PMID: 32514174 https://doi.org/10.1038/s41591-020-0944-y; Grant RA, Morales-Nebreda L, Markov NS, Swaminathan S, Querrey M, Guzman ER, et al. Circuits between infected macrophages and T cells in SARS-CoV-2 pneumonia. Nature. 2021;590(7847):635–641. PMID: 33429418 https://doi.org/10.1038/s41586-020-03148-w; Rezaei M, Mahmoudi S, Mortaz E, Marjani M. Immune cell profiling and antibody responses in patients with COVID-19. BMC Infect Dis. 2021;21(1):646. PMID: 34225645 https://doi.org/10.1186/s12879-021- 06278-2; López-Collazo E, Avendaño-Ortiz J, Martín-Quirós A, Aguirre LA. Immune Response and COVID-19: A mirror image of Sepsis. Int J Biol Sci. 2020;16(14):2479–2489. PMID: 32792851 https://doi.org/10.7150/ ijbs.48400; Karki R, Sharma BR, Tuladhar S, Williams EP, Zalduondo L, Samir P, et al. Synergism of TNF-α and IFN-γ Triggers Inflammatory Cell Death, Tissue Damage, and Mortality in SARS-CoV-2 Infection and Cytokine Shock Syndromes. Cell. 2021;184(1):149–168.e17. PMID: 33278357 https://doi.org/10.1016/j.cell.2020.11.025; Anka AU, Tahir MI, Abubakar SD, Alsabbagh M, Zian Z, Hamedifar H, et al. Coronavirus disease 2019 (COVID-19): An overview of the immunopathology, serological diagnosis and management. Scand J Immunol. 2021;93(4):e12998. PMID: 33190302 https://doi.org/10.1111/ sji.12998; Grifoni A, Weiskopf D, Ramirez SI, Mateus J, Dan JM, Moderbacher CR, et al. Targets of T cell responses to SARS-CoV2 coronavirus in humans with COVID-19 disease and unexposed individuals. Cell. 2020;181(7):1489–1501.e15. PMID: 32473127 https://doi.org/10.1016/ j.cell.2020.05.015; https://www.jnmp.ru/jour/article/view/1578

  3. 3
    Academic Journal

    Συνεισφορές: Исследование выполнено при финансовой поддержке РФФИ в рамках научного проекта № 19-05-50064.

    Πηγή: Medical Immunology (Russia); Том 24, № 6 (2022); 1189-1204 ; Медицинская иммунология; Том 24, № 6 (2022); 1189-1204 ; 2313-741X ; 1563-0625

    Περιγραφή αρχείου: application/pdf

    Relation: https://www.mimmun.ru/mimmun/article/view/2560/1614; https://www.mimmun.ru/mimmun/article/downloadSuppFile/2560/9838; https://www.mimmun.ru/mimmun/article/downloadSuppFile/2560/9839; https://www.mimmun.ru/mimmun/article/downloadSuppFile/2560/9840; https://www.mimmun.ru/mimmun/article/downloadSuppFile/2560/9841; https://www.mimmun.ru/mimmun/article/downloadSuppFile/2560/9842; https://www.mimmun.ru/mimmun/article/downloadSuppFile/2560/9843; https://www.mimmun.ru/mimmun/article/downloadSuppFile/2560/9844; https://www.mimmun.ru/mimmun/article/downloadSuppFile/2560/9845; https://www.mimmun.ru/mimmun/article/downloadSuppFile/2560/9846; https://www.mimmun.ru/mimmun/article/downloadSuppFile/2560/9847; https://www.mimmun.ru/mimmun/article/downloadSuppFile/2560/9848; https://www.mimmun.ru/mimmun/article/downloadSuppFile/2560/9849; https://www.mimmun.ru/mimmun/article/downloadSuppFile/2560/9850; https://www.mimmun.ru/mimmun/article/downloadSuppFile/2560/9851; Балаболкин И.И., Булгакова В.А., Елисеева Т.И. Современный взгляд на развитие и подходы к терапии атопического дерматита у детей // Фарматека, 2020. Т. 27, № 1. С. 20-27.; Губернаторова Е.О., Намаканова О.А., Друцкая М.С., Недоспасов С.А. Клеточные источники ИЛ-6 в патогенезе острой аллергической астмы // Аллергология и иммунология, 2018. Т. 19, № 2. С. 115.; Елисютина О.Г., Феденко Е.С., Болдырева М.Н., Гудима Г.О. Особенности иммунного ответа и роль некоторых цитокинов при актопическом дерматите // Российский аллергологический журнал, 2015. № 1. С. 3-14.; Кайбышева В.О., Михалева Л.М., Никонов Е.Л., Шаповальянц С.Г. Эпидемиология, этиология и патогенез эозинофильного эзофагита. Новейшие данные // Доказательная гастроэнтерология, 2019. Т. 8, № 2. С. 50-72.; Сидоренко Е.В., Выхристенко Л.Р. Фенотпп-ориентированная иммунотерапия бронхиальной астмы // Иммунопатология, аллергология, инфектология, 2018. № 3. С. 60-68.; Хаитов М.Р., Гайсина А.Р., Шиловский И.П., Смирнов В.В., Раменская Г.В., Никонова А.А., Хаитов Р.М. Роль интерлейкина 33 в патогенезе бронхиальной астмы. Новые экспериментальные данные // Биохимия, 2018. Т. 83, № 1. С. 19-33.; Чудаков Д.Б., Рязанцев Д.Ю., Каширина Е.И., Бержец В.М., Свирщевская Е.В. Роль дозы аллергена в индукции у мышей IgE антител на белки из клещей домашней пыли // Иммунология, 2014. Т. 35, № 6. C. 321- 328.; Alessandrini F., Musiol S., Schneider E., Blanko-Perez M., Albrecht M. Mimicking antigen-driven asthma in rodent models – how close can we get? Front. Immunol., 2020, Vol. 11, 575936. doi:10.3389/fimmu.2020.575936.; Balbo P., Silvestri M., Rossi G.A., Crimi E., Burastero S.E. Differential role of CD80 and CD86 on alveolar macrophages in the presentation of allergen to T lymphocytes in asthma. Clin. Exp. Allergy. 2001, Vol. 31, no. 4, pp. 625-636.; Chávez-Galán L., Olleros M.L., Vesin D., Garcia I. Much More than M1 and M2 Macrophages, There are also CD169+ and TCR+ Macrophages. Front Immunol. 2015, Vol. 6, 263. doi:10.3389/fimmu.2015.00263.; Chudakov D.B., Ryasantsev D.Yu., Tsaregorodtseva D.S., Kotsareva O.D., Fattakhova G.V., Svirschevskaya E.V. Tertiary lymphoid structure related B-cell IgE isotype switching and secondary lymphoid organ linked IgE production in mouse allergy model. BMC Immunol., 2020, Vol. 21, 45. doi:10.1186/s12865-020-00376-7.; Constant S.L., Brogdon J.L., Piggott D.A., Herrick C.A., Visintin I., Ruddle N.H., Bottomly K. Resident lung antigen-presenting cells have the capacity to promote Th2 T cell differentiation in situ. J. Clin. Invest., 2002, Vol. 110, no. 10, pp. 1441-1448.; Dullaers M., Schuijs M.J., Willart M., Fierens K., van Moorleghem J., Hammad H., Lambrecht B.N. House dust mite–driven asthma and allergen-specific T cells depend on B cells when the amount of inhaled allergen is limiting. J. Allergy Clin. Immunol., 2016, Vol. 140, no. 1, pp. 76-88.; Frasca D., Diaz A., Romero M., Thaller S., Blomberg B.B. Secretion of autoimmune antibodies in the human subcutaneous adipose tissue. PLoS One, 2018, Vol. 13, no. 5, e0197472. doi:10.1371/journal.pone.0197472.; Kawakami Y., Sielski R., Kawakami T. Mouse body temperature measurement using infrared thermometer during passive systemic anaphylaxis and food allergy evaluation. J. Vis. Exp., 2018, Vol. 14, 58391. doi:10.3791/58391.; Marichal T., Ohata K., Bedoret D., Mesnil C., Sabatel C., Kobiyama K., Lekeux P., Coban C., Akira S., Ishii K.J., Bureau F., Desmet C.J. DNA released from dying host cells mediates aluminum adjuvant activity. Nat. Med., 2011, Vol. 17, pp. 996-1002.; McDonnell M.E., Ganley-Leal L.M., Mehta A., Bigornia S.J., Mott M., Rehman Q., Farb M.G., Hess D.T., Joseph L., Gokce N., Apovian C.M. B lymphocytes in human subcutaneous adipose crown-like structures. Obesity (Silver Spring), 2012, Vol. 20, no. 7, pp. 1372-1378.; Merad M., Sathe P., Helft J., Meller J., Mortha A. The Dendritic Cell Lineage: Ontogeny and Function of Dendritic Cells and Their Subsets in the Steady State and the Inflamed Setting. Annu. Rev. Immunol., 2013, Vol. 31, pp. 563-604.; Morris D.L., Cho K.W., Delproposto J.L., Oatmen K.E., Geletka L.M., Martinez-Santibanez G., Singer K., Lumeng C.N. Adipose tissue macrophages function as antigen-presenting cells and regulate adipose tissue CD4+ T cells in mice. Diabetes, 2013, Vol. 62, no. 8, pp. 2762-2772.; Murphy K.P. Janeway’s immunobiology. 6th ed. New York: Garland Science, 2011.; Niedenberger V., Niggemann B., Kraft D., Spitzauer S., Valenta R. Evolution of IgM, IgE and IgG (1-4) antibody responses in early childhood monitored with recombinant allergen components: implications for class switch mechanisms. Eur. J. Immunol., 2002, Vol. 32, no. 2, pp. 576-584.; Oishi S., Takano R., Tamura S., Tani S., Iwaizumi M., Hamaya Y., Takagaki K., Nagata T., Seto S., Horii T., Osawa S., Furuta T., Miyajima H., Sugimoto K. M2 polarization of murine peritoneal macrophages induces regulatory cytokine production and suppresses T-cell proliferation. Immunology, 2016, Vol. 149, no. 3, pp. 320-328.; Plantinga M., Guilliams M., Vanheerswynghels M., Deswarte K., Branco-Madeira F., Toussaint W., Vanhoutte L., Neyt K., Killeen N., Malissen B., Hammad H., Lambrecht B.N. Conventional and monocyte-derived CD11b(+) dendritic cells initiate and maintain T helper 2 cell-mediated immunity to house dust mite allergen. Immunity, 2013, Vol. 38, no. 2, pp. 322-335.; Poulsen L.K., Hummelshoj L. Triggers of IgE class switching and allergy development. Ann. Med., 2007, Vol. 39, no. 6, pp. 440-456.; Schlitzer A., Ginhoux F. Organization of the mouse and human DC network. Curr. Opin. Immunol., 2014, Vol. 26, pp. 90-99.; https://www.mimmun.ru/mimmun/article/view/2560

  4. 4
    Academic Journal

    Πηγή: Achievements of Clinical and Experimental Medicine; No. 1 (2019); 92-99 ; Достижения клинической и экспериментальной медицины; № 1 (2019); 92-99 ; Здобутки клінічної і експериментальної медицини; № 1 (2019); 92-99 ; 2415-8836 ; 1811-2471 ; 10.11603/1811-2471.2019.v0.i1

    Περιγραφή αρχείου: application/pdf

  5. 5
    Academic Journal

    Πηγή: Russian Journal of Transplantology and Artificial Organs; Том 17, № 4 (2015); 104-117 ; Вестник трансплантологии и искусственных органов; Том 17, № 4 (2015); 104-117 ; 1995-1191 ; 10.15825/1995-1191-2015-4

    Περιγραφή αρχείου: application/pdf

    Relation: https://journal.transpl.ru/vtio/article/view/597/513; Afzali B, Lombardi G and Lechler R. Pathways of major histocompatibility complex allorecognition. Curr Opin Organ Transplant. 2008; 13 (4): 1–12.; D’Orsogna LJ, Roelen DL, Doxiadis IIN and Claas FHG. TCR cross-reactivity and allorecognition: new insights into the immunogenetics of allorecognition. Immunogenetics. 2012; 64: 77–85.; Heeger PS. T-Cell Allorecognition and Transplant Rejection: A Summary and Update. American Journal of Transplantation. 2003; 3: 525–533.; Bracamonte-Baran W, Burlingham W. Non-inherited Maternal Antigens, Pregnancy and Allotolerance. Biomed J. 2015; 38 (1): 39–51.; Zinkernagel RM, Doherty PC. Immunological surveillance against alteredself components by sensitized T-lymphocytes in lymphocytic choriomeningitis. Nature. 1974; 251: 547–548.; Marsh SGE, Albert ED, Bodmer WF et al. Nomenclature for factors of the HLA system. Tissue Antigens. 2010; 75: 291–455.; Шевченко ОП, Орлова ОВ, Халилулин ТА. Иммуносупрессия, иммунная толерантность и костимуляция Т-лимфоцитов. Иммуносупрессия при трансплантации солидных органов / Под ред. С.В. Готье. М.–Тверь: Триада, 2008: 472. Shevchenko OP, Orlova OV, Halilulin TA. Immunosupressija, immunnaja tolerantnost' i kostimuljacija T-limfocitov. Immunosupressija pri transplantacii solidnyh organov / Pod red. S.V. Got'e. M.–Tver': Triada, 2008: 472.; Рабсон А, Ройт А, Делвз П. Основы медицинской иммунологии. М.: Мир, 2006. Rabson A, Roitt A, Delvz P. Osnovi medizinskoy immunologii. M.: Mir, 2006.; Rolls HK, Kishimoto K, Dong VM et al. T-cell response to cardiac myosin persists in the absence of an alloimmune response in recipients with chronic cardiac allograft rejection. Transplantation. 2002; 74 (7): 1053–1057.; Sivaganesh S, Harper SJ, Conlon TM et al. Co-presentation of intact and processed MHC alloantigen by recipient dendritic cells enables delivery of linked help to alloreactive CD8 T-cells by indirect-pathway CD4 T-cells. J. Immunol. 2013; 190 (11): 5829–5838.; Benichou G, Yamada Y, Yun S et al. Immune recognition and rejection of allogeneic skin grafts. Immunotherapy. 2011; 3 (6): 757–770.; Gould DS, Auchincloss HJr. Direct and indirect recognition: the role of MHC antigens in graft rejection. Immunol. Today. 1999; 20 (2): 77–82.; Ingulli E. Mechanism of cellular rejection in transplantation. Pediatr. Nephrol. 2010; 25: 61–74.; Starr TK, Jameson SC, Hogquist KA. Positive and negative selection of T-cells. Annu. Rev. Immunol. 2003; 21: 139–176.; Ross JO, Melichar HJ, Au-Yeung BB et al. Distinct phases in the positive selection of CD8 T cells distinguished by intrathymic migration and T-cell receptor signaling patterns. PNAS. 2014; 2550–2558.; Reiser JB, Darnault C, Gregoire C et al. CDR3 loop flexibility contributes to the degeneracy of TCR recognition. Nat. Immunol. 2003; 4 (3): 241.; Salomon B, Bluestone JA. Complexities of CD28/B7: CTLA-4 costimulatory pathways in autoimmunity and transplantation. Annu. Rev. Immunol. 2001; 19: 225–252.; Lee KH, Holdorf AD, Dustin ML et al. T-cell receptor signaling precedes immunological synapse formation. Science. 2002; 295: 1539–1542.; Lopez-Neblina F, Toledo AH, Toledo-Pereyra LH. Molecular biology of apoptosis in ischemia and reperfusion. J. Invest. Surg. 2005; 18: 335–350.; Warger T, Hilf N, Rechtsteiner G et al. Interaction of TLR2 and TLR4 ligands with the N-terminal domain of Gp96 amplifies innate and adaptive immune responses. J. Biol. Chem. 2006; 281: 22 545–22 553.; Piotti G, Palmisano A, Maggiore U et al. Vascular endothelium as a target of immune response in renal transplant rejection. Frontiers in immunology. 2014; 505 (5): 1–9.; Lee RS, Grusby MJ, Glimcher LH et al. Indirect recognition by helper cells can induce donor-specific cytotoxic T-lymphocytes in vivo. J. Exp. Med. 1994; 179 (3): 865–872.; Schoenberger SP, Toes RE, van der Voort EI et al. T-cell help for cytotoxic T-lymphocytes is mediated by CD40–CD40L interactions. Nature. 1998; 393 (6684): 480–483.; Bharat A and Mohanakumar T. Allopeptides and the Alloimmune Response. Cell Immunol. 2007; 248 (1): 31–43.; Jiang S, Herrera O, Lechler RI. New spectrum of allorecognition pathways: implications for graft rejection and transplantation tolerance. Curr. Opin. Immunol. 2004; 16: 550–557.; Benichou G, Fedoseyeva E, Lehmann PV et al. Limited T-cell response to donor MHC peptides during allograft rejection. Implications for selective immune therapy in transplantation. J. Immunol. 1994; 153 (3): 938–945.; Demaria S, Bushkin Y. Soluble HLA proteins with bound peptides are released from the cell surface by the membrane metalloproteinase. Hum. Immunol. 2000: 61 (12): 1332–1338.; Denton MD, Geehan CS, Alexander SI et al. Endothelial cells modify the costimulatory capacity of transmigrating leukocytes and promote CD28-mediated CD4 (+) Tcell alloactivation. J. Exp. Med. 1999; 190 (4): 555–566.; Rogers NJ and Lechler RI. Allorecognition. American Journal of Transplantation. 2001; 1: 97–102.; Albert ML, Sauter B, Bhardwaj N. Dendritic cells acquire antigen from apoptotic cells and induce class Irestricted CTLs. Nature. 1998; 392: 86–89.; Taylor AL, Negus SL, Negus M et al. Pathways of helper CD4 T-cell allorecognition in generating alloantibody and CD8 T-cell alloimmunity. Transplantation. 2007; 83: 931–937.; Arakelov A, Lakkis FG. The alloimmune response and effector mechanisms of allograft rejection. Semin Nephrol. 2000; 20: 95–102.; Benichou G, Tam RC, Soares LR et al. Indirect T-cell allorecognition: perspectives for peptide-based therapy in transplantation. Immunol. Today. 1997; 18 (2): 67–71.; Rechavi O, Goldstein I, Kloog Y. Intercellular exchange of proteins: The immune cell habit of sharing. FEBS Letters. 2009; 583: 1792–1799.; Smyth LA, Afzali B, Tsang J et al. Intercellular Transfer of MHC and Immunological Molecules: Molecular Mechanisms and Biological Significance. Am. J. Transplant. 2007; 7 (6): 1–14.; Hudson L, Sprent J, Miller JF et al. B cell-derived immunoglobulin on activated mouse T-lymphocyte. Nature. 1974; 251: 60–62.; Merkenschlager M. Tracing interactions of thymocytes with individual stromal cell partners. Eur. J. Immunol. 1996; 26: 892–896.; Herrera OB, Golshayan D, Tibbott R et al. A novel pathway of alloantigen presentation by dendritic cells. J. Immunol. 2004; 173: 4828–4837.; Smyth LA, Herrera OB, Golshayan D et al. A novel pathway of antigen presentation by dendritic and endothelial cells: implications for allorecognition and infectious diseases. Transplantation. 2006; 82: S15–S18.; Game DS, Rogers NJ, Lechler RI. Acquisition of HLADR and costimulatory molecules by T-cells from allogeneic antigen presenting cells. Am. J. Transplant. 2005; 5: 1614–1625.; Morelli AE, Larregina AT, Shufesky WJ et al. Endocytosis, intracellular sorting, and processing of exosomes by dendritic cells. Blood. 2004; 104: 3257–3266.; de Candia P, Torri A, Pagani M et al. Serum microRNAs as biomarkers of human lymphocyte activation in health and disease. Front Immunol. 2014; 5: 43.; Raposo G, Stoorvogel W. Extracellular vesicles: Exosomes, microvesicles and friends. J. Cell Biol. 2013; 200: 373-83.; Fevrier B and Raposo G. Exosomes: endosomal-derived vesicles shipping extracellular messages. Curr. Opin. Cell Biol. 2004; 16: 415–442.; Delamarre L, Pack M, Chang H et al. Differential lysosomal proteolysis in antigen-presenting cells determines antigen fate. Science. 2005; 307: 1630–1634.; Montecalvo A, Larregina AT, Morelli AE. Methods of analysis of dendritic cell-derived exosomes-shuttle micro RNA and its horizontal propagation between dendritic cells. Methods Mol. Biol. 2013; 1024: 19–40.; https://journal.transpl.ru/vtio/article/view/597

  6. 6
  7. 7
  8. 8
  9. 9
  10. 10
  11. 11
  12. 12
  13. 13
    Academic Journal

    Πηγή: Bulletin of Siberian Medicine; Том 11, № 6 (2012); 218-220 ; Бюллетень сибирской медицины; Том 11, № 6 (2012); 218-220 ; 1819-3684 ; 1682-0363 ; 10.20538/1682-0363-2012-11-6

    Περιγραφή αρχείου: application/pdf

    Relation: https://bulletin.tomsk.ru/jour/article/view/915/711; Сахарова И.Я., Ариэль Б.М., Кноринг Б.Е. и др. Некоторые закономерности иммунного ответа у больных туберкулезом легких с лекарственно-устойчивыми штаммами микобактерий // Проблемы туберкулеза и болезни легких. 2008. № 12. С. 22—27.; Чикилева И.О., Караулов А.В., Анисимов Н.Ю., Киселевский М.В. Двойственная роль толлподобных рецепторов в регуляции противоопухолевого иммунитета // Иммунология. 2010. № 1. С. 52—55.; Coombes J.L., Powrie F. Dendritic cells in intestinal immune regulation // Nature reviews immunology. 2008. V. 8. P. 435—446.; Coutanceau E., Jessen S.S., Gad M. et al. Selective suppression of dendritic cell function by mycobacterium ulcerans toxin mycolactone // The J. of experimental medicine. 2007. V. 6, № 1. Р. 395—403.; Hamza T., Barnett J.B., Li B. Interleukin 12 a key immu-noregulatory cytokine in infection applications // Intern. J. of Molecular Sciences. 2010. V. 11. P. 789—806.; Kopp E., Medzhitov R. Recognition of microbial infection by Toll-like receptors // Current opinion in immunology. 2003. V. 15. P. 396—401.; Steinman R.M., Banchereau J. Taking dendritic cells into medicine // Nature. 2007. V. 449, № 27. Р. 419—426.; https://bulletin.tomsk.ru/jour/article/view/915

  14. 14
  15. 15
  16. 16
  17. 17
  18. 18
  19. 19
  20. 20